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Abstract 

In this paper Elzaki transform of fractional order through the Mit­
tag - Leffler function is introduced. Employing the same, few proper­
ties of Elzaki transform and its inversion are obtained. 
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1. Introduction 

Numerous integral transforms, namely, Fourier, Laplace, etc. are used to 
solve the differential and integral equations. Elzaki transform is introduced, 
see Elzaki [4]. Elzaki, et al. [5, 6, 7] describe the Elzaki transform as rivals 
of the Sumudu transform in solving problems related to telegraph equation, 
and integral and differential equations. More of its properties are proved in 
[5, 6, 7, 8, 9] 

Elzaki transform is extended to distribution spaces and Boehmian spaces 
[1, 2] , and the same is proved for distribution spaces and to obtain solution 
of Abel integral equation [15]. Fractional Natural transform using Mittag -
Leffler function, is obtained and its properties are discussed in [14]. In this 
paper, we introduce the Elzaki transform of fractional order using Mittag -
Leffler function and study its properties. 

In what follows, are the definition of the Elzaki transform and its proper­
ties. Consider a set A of function f (t) of exponential order, which is defined 
by 

A = {f(t) : 3M, kl' k2 > 0, If(t)1 < Meltl/kjj t E (-l)j x [0, oo)}, 

where M is a constant of finite number and kl and k2 may be finite or infinite. 

Elzaki transform is given by 

lE[J(t)] = T(v) = v 100 
e-(fi) f(t)dt (1) 

The duality relation between the Elzaki transform and the Laplace 
transform is suggested by 

T(v) = vL(l/v) L(8) = sT(1/8) (2) 

where L denotes the Laplace transform and T is the Elzaki transform. 

The properties of Elzaki transform may be enumerated as 

1. The Elzaki transform of derivative of f(t) and nth order derivative of 
f(t) are, respectively, defined by 

lE[J'(t)] = T'(v) = T(v) - vf(O) 
v 

(3) 

and 
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E[f(n)(t)] = T(n) (v) = T(v) _ ~v2-n+k fk)(O) 
vn L.J 

k=O 

2. When f(t) = tn ,the Elzaki transform reduces to 

E[tn] = n!vn+2 

= r(n + 1)vn+2 . 

(4) 

(5) 
(6) 

3. If F(v) and G(v) are Elzaki transforms of the functions f{t) and g(t), 
then the convolution is given by 

1 
E[(f * g)(t)] = - F(v)G(v) . 

v 
(7) 

Theorem 1 [Inversion formula of Elzaki transform] [21] : Let E( v) be 
the Elzaki transform of f (t) such that 

(i) sE{1/s) is a meromorphic function, with singulartities having Re{s) < 
0, and 

(ii) there exists a circular region r with radius R , positive constants M 
and K, with 

IsE{1/s)1 < MjRK (8) 

and 

1 l O+ ioo 
f(t) = -2 . estsE(1/s)ds 

'7r?' a-ioo 

Le. 

. f(t) = I: Res [eBtsE(1js)] (9) 

Further, using (2), Equation (11) can also be written as 

(10) 

The Mittag - Leffler function [17] is a function, which is a direct general­
ization of the exponential function, and has an affinity for fractional calculus. 

One parameter representation of the Mittag - Leffler function is given by 
[16] 
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00 k 

Ec.(z) = ~ (a: + 1) , a> 0 (11) 

Whereas two parameter Mittag - Leffler function [3] is represented as 

00 k 

Ec.,(3(z) = £; (akZ + fJ) , a, fJ, Z E C, Re(a, fJ) > 0 (12) 

with C being the set of complex numbers. 

Special cases of the Mittag - Leffler function are 
(i) Ec.(z) = l:Z ' Izi < 1 
(ii) E1(z) = eZ 

(iii) E2(Z) = cosh ( ";z), Z E C 
00 00 

(iv) E1,1(Z) = 2: r(k:l) = 2: ~ = eZ 

k=O k=O 
00 zlc 1 00 zk e%-l 

(v) E1,2(Z) = 2: r(k+2) = Z 2: r(k+1) = -z-· 
k=O k=O 

Following relations related to the Mittag - Leffler function may be useful. 
(i) tz:Em(zm) = Em(zm) 
(ii) Ec.,(3(z) = zEc.,c.+(3(z) + r((3) 
(iii).!i.E (z) = E""p_l(Z)-«(3-1)E""p(z) dz c.,(3 c.z 

Different techniques are employed to solve fractional differential equations 
[2, 16, 17, 18, 19,20]. Using the Mittag - Leffler function and its properties, 
different types of integral transforms and some functions are defined and 
studied by the researchers [12, 13, 14, 15, 16, 17, 18]. 

In the following section, we give a brief introduction to fractional 
derivative that is employed, which is followed by the Elzaki transform of 
fractional order via the Mittag - Leffler function, and prove derivation of the 

. properties, In Section 3, we obtain the inversion formula. 

2. Preliminaries on Fractional Derivatives 

2.1 Fractional derivative via fractional difference 

Definition 1 : Let there be a continuous function f: R ~ R, t ~ f (t) 
(but not necessarily differentiable). Let h > 0 be a constant discretization 
span. The forward operator FW (h) is given by 

FW(h)f(t) = f(t + h). (13) 
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With regard to (13), the fractional difference of order a, 0 < a < 1 
, of the function /(t) is given by 

1:;.'/(1) = (FW _I)' = t,(-1)'(~)flt+ (a - k)h], 

and the fractional derivative of order a is defined by the limit 

(14) 

2.2 Modified Riemann - Liouville fractional derivative 

To overcome with some drawback with the Riemann - Liouville fractional 
derivative, the modified version is devised [10, 11]. 

Definition 2 : Let /: R -+ R, t -+ /(t) is a continuous function. 
(i) When /(t) is constant K, its fractional derivative of order a , is 

given by 

DfK 
1 1 

= K r(l _ a) . ta ' a ;::: 0 

= 0 a> 0 

(ii) For /(t) being not a constant, we have 

/(t) = /(0) + (f(t) - /(0)) 

and its fractional derivative is defined by 

/(a)(t) = Df /(0) + Df(f(t) - /(0)) , (15) 

which when a < 0 , is given by 

. t 

Df(f(t) - /(0)) = r( ~a) J (t - ~ta-l /(~)d~, a < 0 (16) 
o 

whereas for a > 0, we have 

Df(f(t) - /(0)) = Df(f(t)) = Dt(f(a-l) (t)) (17) 

and 

(18) 
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2.3 Taylor series of fractional order 

Definition 3 : The continuous function f : R -- R, t -- f (t) has a 
fractional derivative of order ko: . For any positive integer k and for any 0:, 

o < 0: ::; 1, we have 

00 hak 
f(t + h) = L -( -) f(ak)(t) ,0 < 0: ::; 1, 

k=O o:k! 

where r(l + o:k) = (o:k)!. 

2.4 Integration with respect to (dty' 

(19) 

The integral with respect to is defined as the solution of the fractional 
differential equation 

dy = f(t)(dty~ , t ~ 0, y(O) = 0 (20) 

Lemma 1 [10, 11J : Let f(t)be a continuous function. Then the solution 
y(t), y(O) = 0 , is given by 

y = it f(e)(del~ 
= 0: it (t - e)(a-l) f(e)de, 0 < 0: < 1 . (21) 

3. Elzaki Transform of Fractional Order and the Mittag -
Leffler Function 

In this section Elzaki transform of fractional order is defined by using 
the Mittag - Leffler function, which is the generalization of the exponential 
function. Properties and convolution theorem are proved using the Elzaki 
transform of fractional order. 

By virtue of terminologies used in the preceding sections and recalling 
those described for Fourier and the Lapalce transforms, respectively, through 
the Mittag - Leffler function [10, 11], following definition results. 

Definition 4 : Let f(t) be a function that vanishes for negative values 
of t . Then the Elzaki transform of order 0:, for finite f(t), is defined by 
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lEa[J(t)] = Ta(v) = v 100 Ea ( _~) a J(t)(dt)a (22) 

= 100 v2 f(vt)Ea (-tt (dt)a (23) 

= lim 1M v2J(vt)Ea (-tt (dt)a (24) 
Mjoo 0 

where Ea is the Mittag - Leffler function, given by (11). 

Theorem 1 (Elzaki Laplace Duality of Fractional order) : If the 
Laplace transform of fractional order of a function J(t) is La{J(t)} = Fa(s) 
and the Elzaki transform lEa[J(t)] = Ta(v) is of order 0:, then 

(25) 

Proof: Invoking the definition of Elzaki transform of fractional order 
(22), we write 

lEa [J(t)] = Ta(v) = 100 v J(t)Ea ( ( _~) a) (dtt 

= 1i~ 0: 1M (A1 - t)a-lvJ(t)Ea ( ( -~) a) dt . (26) 

By using the change of variable wv - t , we get the right hand side 

= lim 0: 1M (M - vw)a-lv2 J(vw)Ea (-wt dw 
Mjoo 0 

By using the change of variable vw - t', futher we get 

= lim 0: 1M (M - t')a-lv2 J(t')Ea (_~) a dt' 
Mjoo 0 V V 

= V 100 J(t')Ea (-f) adt, , using Laplace transform 

Hence, 

(27) 
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proves the theorem. 

Theorem 2 (Change of Scale Property) : Let f(at) be a function in 
the set A , where a is non - zero constant. Then 

(28) 

Conditions are as mentioned above. 
Proof: Using (22), we have 

By using the change of variable at - t', we get 

= lim a (M - - )Ct-l v f(t')ECt -- -1M a t' ( t') Ct dt' 
Mioo 0 a av a 

1Ma (Ma - t')c<-l ( t')Ct 
= v f(t')ECt -- dt' 

o aCt av 
i.e. 

(30) 

Theorem is proved. 

Theorem 3 : Let f (t - b) is a function ·of fractional Elzaki transform. 
Then 

lECt[j(t - b)] = ECt ( ( _~) Ct) TCt(v) . (31) 

Proof: By (22) of Definition 4, we have. 

lffiCt[j(t - b)] = 100 v f(t _ b)Eex ( ( _;) Ct) (dt)Ct 

1M ( t)Ct = lim a (JvI - t)Ct-lv f(t - b)Eex -- dt 
Mioo 0 v 

(32) 

Considering t - b = x, we have the right hand side 

l M - b ( (b+X))Ct = lim a (M - b - X)Ct-l v f(x)ECt - dx 
Mioo 0 v 
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rM - b . X 0< (b) a = Jo (M - b - xt-1v f(x)Eo (-;) Eo -; dx 

i.e. 

lEo[j(t - b)] = Eo ( -~) a To (v) (33) 

which is due to Eo(>'(x + y)O) = Eo(>.xO)Eo(>'YO). 

Theorem 4 : If f(t) is Eo(aOtO)f(t), then the Elzaki transform is given 
by 

lEo[Eo(aOtO)f(t)] = ( 1 ) Ct To< ( v ) 
1- av 1- av 

Proof: Using (22) again of Definition 4, we have 

i.e. 

= }jf~/~ 1M (1V! - t)o-I V f(t)Eo ( - C -vavt ) ) 0 dt 

Setting (l-av)t = w, we have the right hand side, reduced to 

(34) 

1M -av ( w) 0-1 (w) (W) 0 dw = lim a M - v f Eo --
Mjoo 0 1 - av 1 - av v (1 - av) 

rM- av ( 1)0. ( w) W)Ct = Jo 1 - av (M(l - av) - W))o-I V f 1 _ av Eo ( --; dw , 

i.e. 

(35) 

Hence, the theorem is proved. 
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Theorem 5 : Let the convolution of two functions f(t) and g(t) of order 
a is given by 

00 

(f(t) * g(t))a = J f(t - {)g(e)(d{)a. (36) 

o 
Then the convolution of Elzaki transform of order a is 

lIDa[(f(t) * g(t))al = ~Ma(v)Na(v) . 
v 

(37) 

Proof: The convolution of Laplace transform of order a is given by 

La[(f(t) * g(t))aJ = La{f(t)}La{g(t)} (38) 

Now using Elzaki - Laplace duality (Theorem 1, (25)), we have 

i.e. 

(39) 

The theorem is proved. 

Theorem 6 : The inversion formula of the Elzaki transform of fractional 
order a that is given by (22), is 

(40) 

According to the fractional Elzaki - Laplace duality (Theorem 1), the inver­
sion formula can easily be proved. 
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