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Abstract

In this paper, we introduce a new class of rings whose elements
are a sum of a central element and a nilpotent element, namely, a ring
R is called CN if each element a of R has a decomposition a = c+n
where c is central and n is nilpotent. In this note, we characterize
elements in My, (R) and Uz(R) having CN-decompositions. For any
field F, we give examples to show that M, (F’) can not be a CN-ring.
For a division ring D, we prove that if M,(D) is a CN-ring, then the
cardinality of the center of D is strictly greater than n. Especially,
we investigate several kinds of conditions under which some subrings
of full matrix rings over CN rings are CN.
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1 Introduction

Throughout this paper all rings are associative with identity unless other-
wise stated. Let R be aring. Inv(R), J(R), C(R) and nil(R) will denote the
group of units, the Jacobson radical, the center and the set of all nilpotent
elements of a ring R, respectively. Recall that in [2], uniquely nil clean rings
are defined. An element a in a ring R is called uniquely nil clean if there
is a unique idempotent e € R such that a — e is nilpotent. The ring R is
untquely nil clean if each of its elements is uniquely clean. It is proved that
in a uniquely nil clean ring, every idempotent is central. Also a uniquely
nil clean ring R is called uniquely strongly nil clean [5] if @ and e commute.
Strongly nil cleanness and uniquely strongly nil cleanness are equivalent by
[2]. Let R be a (*)-ring. In [7], a € R is called uniquely strongly nil *-clean
ring if there is a unique projection p € R, i.e., p> = p = p*, and n € nil(R)
such that a = p+n and pn = np. R is called a uniquely strongly nil *-clean
ring if each of its elements is uniquely strongly nil *-clean. Another version
of the notion of clean rings is that of CU rings. In [1], an element a € R
is called a CU element if there exist ¢ € C(R) and n € nil(R) such that
a = ¢+ n. The ring R is called CU if each of its elements is CU. Moti-
vated by these facts, we investigate basic properties of rings in which every
element is the sum of a central element and a nilpotent element.

In what follows, Z, is the ring of integers modulo n for some positive
integer n. Let M,(R) denote the full matrix ring over R and U,(R) stand
for the subring of M, (R) consisting of all n x n upper triangular matrices.
And in the following, we give definitions of some other subrings of U,(R)
to discuss in the sequel whether they satisfy CN property:

D, (R) = {(aij) € Mn(R) | all diagonal entries of (a;;) are equal},

n

Va(R) = {Z ajei—j+yi | a5 € R} )

i=j j=1

n k n—k n—k
Vi(R) = {z Y Tjeganit DY Gkt Ty i € R}

i=j j=1 i=j j=1
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where 2; € R,aj, € R, 1<i<k 1< jsn—kand k+ 1< s<n,

k n n
DE(R) = {{Z Z aijeij + Z bk+1yie(k+1); + cIn | i, bij,c € R}

i=1 j=k+1 j=k+2

where k = [n/2], i.e., k satisfies n = 2k when n is an even integer, and
n = 2k + 1 when n is an odd integer, and

D%(R) = {(a'ij) € Un(R) I Q11 = Gpp € Zaa/ij & R, {7').7} - {2,3,...,72— 1}}

2 Basic Properties and Examples

Definition 2.1. Let R be a ring with identity. An element a € R is called
CN or it has a CN-decomposition if a = ¢+ n, where ¢ € C(R) and n €
nil(R). If every element of R has a CN decomposition, then R is called a
CN ring.

We present some examples to illustrate the concept of CN property for
rings.

Example 2.2. (1) Every commutative ring is CN.
(2) Every nilpotent element in a ring R has a CN decomposition.
(3) For a field F' and for any positive integer n, D,(F') is a CN ring.

Proposition 2.3. Let R be a ring and n a positive integer. Then A €
M,(R) has a CN decomposition if and only if for each P € GL,(R),
PAP~! € M,(R) has a CN decomposition.

Proof. Assume that A € M, (R) has a CN decomposition A = C'+ N where
C € C(Mn(R)) and N €nil(M,(R)). Then PAP™! = PCP~! 4+ PNP ! is
a CN decomposition of PAP~! since PCP~* = C € C(M,(R)) and it is
obvious that PNP~! € nil(M,(R)) . Conversely, suppose that PAP~! has
a CN decomposition PAP™' = C+ N. Then A= P7'CP + P~INP is the
CN decomposition of PAP™!. O
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Let R be a commutative ring and n a positive integer. The following re-
sult gives us a way to find out whether A € M,(R) has a CN decomposition.
Note that it is easily shown that for a commutative ring A € C(M,(R)) if
and only if A = c¢I, for some ¢ € R.

Theorem 2.4. Let R be a commutative ring. Then A € M,(R) has a CN
decomposition if and only if A — cl, € nil(M,(R)) for some ¢ € R.

Proof. Assume that A € M, (R) has a CN decomposition. By assumption
there exists ¢ € R such that A — cl,, € nil(M,(R)). Conversely, suppose
that for any A € M, (R), there exists ¢ € R such that A—cI, € nil(M,(R)).
Since cI, is central in M,(R), A € M,(R) has a CN decomposition. [

Remark. Let R be a commutative ring. Then A € M, (R) is a nilpotent
matrix if and only if all eigenvalues of A are zero. A ring R is reduced if R
has no nonzero nilpotent element. Hence we have.

Corollary 2.5. Let R be a commutative reduced ring and n a positive in-
teger. Then A € M,(R) has a CN decomposition if and only if the only
etgenvalue for A —cI, is 0 for some c € R.

Proposition 2.6. Let R be a commutative ring. Then Ux(R) is a CN ring
if and only if for any a,b € R, there ezxists c € R such that a —c, b—c €

nil(R).

Proof. Let A = [g 2 € Ms(R) has CN decomposition if and only if there

exist C = {8 2] € C(My(R)) and N = {g Z} € nil(M,(R)) such that
A=C+N. Since N € nil(M(R)) if and only if z, z € nil(R), A= C+ N
is the CN decomposition of A if and only if there exists ¢ € R such that
A — ¢l € nil(M,(R)) if and only if a — ¢, b — ¢ € nil(R). O
3 0 .
05 ] € Uz(R). Then there is no
¢ € Z such that 3 — ¢ and 5 — ¢ are nilpotent. By Proposition 2.6, Uy(Z) is
not CN.

Example 2.7. Let R = Z and A =
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Theorem 2.8. Let R be a commutative local ring. If My(R) is a CN ring,
then R/J(R) is not isomorphic to Zs.

Proof. Assume that M,(R) is a CN ring. Suppose that R/J(R) is iso-
morphic to Z, and we get a contradiction. Let A = {é 8 € M(R)
and f(c) = det(A — cl,) be the characteristic polynomial of A. Then
f(c) = ¢(c—1) € nil(R). By Proposition 2.6, 1 —c and c are nilpotent. Since
1 =c+ (1 - ¢), By hypothesis, ¢ or 1 — ¢ is invertible, therefore ¢ € J(R)
or 1 —c € J(R). This is a contradiction. O

In [1), Chen and at al. defined and studied CU rings. Let R be a
ring. An element ¢ € R has a CU-decomposition if a = ¢ + u for some
c € C(R) and u € U(R). A ring R is called CU, if every element of R has
a C'U-decomposition.

Proposition 2.9. Every CN ring is CU.

Proof. Let R be a CN ring and @ € R. By assumption a + 1 = ¢+ n for
some ¢ € C(R) and n € N(R). Hence a = c+(n—1) is a CU decomposition
of a. O

Theorem 2.10. Let R be a division ring and n a positive integer. If M, (R)
is a CN ring, then |C(R)| > n.

Proof. Assume that |C(R)| < n. Consider A as a diagonal matrix which
has the property that each element of C(R) is one of the diagonal entries
of A. For such a matrix A there is no ¢ € C(R) for which 4 — cI is a unit.
Hence M,(R) is not a CU ring. By Proposition 2.9, M,(R) can not be a
CN ring. This contradicts hypothesis. So |C(R)| > n. O

The converse of Proposition 2.9 is not true in general.

Example 2.11. Let H = {a + bi + ¢j + dk|a,b,c,d € R} be the ring
of real quaternions, where 1> = j2 = k? = ijk = 1 and 3j = —j3,ik =
—ki, jk = —kj. H is a noncommutative division ring. Note that C(H) = R
and nil(H) = 0. Let a € H. If a = 0, then 0 = 1 + (—1) is the CU-
decomposition. If a # 0, then a = 0 + a is the CU-decomposition of a.
Hence H is a CU ring. On the other hand there is no CN decomposition of
¢ € H. Hence it is not a CN ring.
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Example 2.12. Let D be a division ring and consider the ring Dy(D). The
ring Dy(D) is a noncommutative local ring, and so it is a CU-ring, but not
a CN ring.

For a positive integer n, one may suspect that if R is a CN ring then
the matrix ring M, (R) is also CN. The following examples shows that this
is not true in general. Also whether or not M,(R) to be a CN ring does not
depend on the cardinality of C(R) comparing with n, that is, |C(R)| > n
or |C(R)| < n.

Example 2.13. (1) Since Z is commutative, it is a CN ring. But R =
M>(Z) is not a CN ring.

(2) R = My(Z3) is not a CN ring.

(3) R = M3(Zs) is not a CN ring.

Proof. (1) Consider A = é 2 € M,(Z) which is neither central nor nilpo-
tent. Let C' = g 2 € C(M,y(Z)) and N = [‘; ﬂ enil(M,(Z)) with

A=C+ N. Then x +t = 0 and zy = xt. This is a contradiction. Hence A
does not have CN decomposition.

10
(2)LetA-[0 0

sume that A has CN decomposition with A = C + N where C = [a 0] €

J € My(Zs) which is neither central nor nilpotent. As-

0 a
C(My(Z3)) and N = [ag Z € nil(My(Z3)). A= C + N implies 1 = a + z,
=a+u and y =t = 0. These equalities do not satisfied in Z3. For if
a=0,thenz=1;ifa=1,thenz=0and u=2;if a = 2, then z = 2 and
u = 1. All these lead us a contradition. Hence M;(Z3) is not a CN ring.
1 00
(3) Let A= |0 0 0| € M3(Zy) which is neither central nor nilpotent.
0 00
Assume that A has CN decomposition with A = C + N where C =
a 0 0 T Y %
0 a 0| € C(M3(Zy)) and N= |t u v | €nil(M;3(Zy)). A=C+ N
0 0 a E Il m
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impliess l =a+z,0=a+u,0=a+mandy=2=v=t=k=10=0.
These equalities do not satisfied in Z,. Hence Mj3(Z;) is not a CN ring. In
fact, assume that 1 = a + z holds in Z,. There are two cases for a. a = 0 or
a=1 Ifa=1then z =0 and u = 1. N being nilpotent implies u = 1 is
nilpotent. A contradiction. Otherwise, a = 0. Then = 1. Again N being
nilpotent implies = 1 is nilpotent. A contradiction. Thus M3(Z,) is not
a CN ring. O

In spite of the fact that U,(R) need not be CN for any positive integer
n, there are CN subrings of U, (R).

Proposition 2.14. For a ring R and an integer n > 1, the following are
equivalent:

(1) R is CN.

(2) Dn(R) is CN.

(3) DX(R) is CN.

(4) V.(R) is CN.

(5) V*(R) is CN.

Proof. Note that the elements of D,(R), DX(R), V,(R) and V*(R) having
zero as diagonal entries are nilpotent. To complete the proof, it is enough
to show (1) holds if and only if (2) holds for n = 4. The other cases are just
a repetition.

a; Qg a3z a4

0 a1 az ag
0 0 ay ary

0 0 0 a
and n € nil(R) such that a; = ¢+ n.

(1)= (2) Let A= € Dy(R). By (1), there exist ¢ € C(R)

c 000 n G az G4
Lt C= [0 &0 andan=|) o @ “|. Then C € C(Vu(R))
0 00 ¢ 0 0 0 n
and N € nil(D,(R)).
a 0 0 0
0 a 00
(2) = (1) Let a € R. By (2) A = 00 a0 € D4(R) has a CN
0 00 a
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c 000
" 0 c 00O
decomposition A = C + N where C = 00 ¢ 0 € C(Dy(R)) and
0 0 0 ¢
n % % %
0 n * =x .
N = 00 n x| € C(Dp(R)). Then a = c+n with c € C(R) and n €
0 0 0 n
nil(R). O

Lemma 2.15. Every homomorphic image of CN ring is CN ring.

Proof. Let f : R — S be an epimorphism of rings with R CN ring. Let
s = f(z) € S with z € R. There exist ¢ € C(R) and n € nil(R) such
that = ¢+ n. Since f is epic, f(c) € C(S) and f(n) € nil(R). Hence
s = f(c) + f(n) is CN decomposition of s. O

Proposition 2.16. Let R = [[,.; R; be a direct product of rings. R is CN
if and only if R; is CN for each i € I.

Proof. We may assume that I = {1,2} and R = R; X R;. Note that
C(R) = C(R;y) x C(R,) and nil(R) = nil(R;) x nil(Ry).

Necessity: Let 1 € R;. Then (r1,0) = (c1,¢2) + (n1,n2) where (¢1,¢) €
C(R) and (n1,ny) € nil(R). Hence r; = ¢1 + ny is the CN decomposition
of 11 € R;. So Ry is CN. A similar proof takes care for Ry be CN.
‘Sufficiency: Assume that R; and R, are CN. Let (r1,72) € R. By assump-
tion r; and r, have CN decompositions 1 = ¢1+n1 and 7y = cy+ny where ¢;
is central in Ry, n; is nilpotent in R; and ¢, is central in Ry, ns is nilpotent
in R,. Hence (r1,72) has a CN decomposition (r1,72) = (c1,¢2) + (ng,n2).
This completes the proof. a

Let R be a ring and D(Z, R) denote the Dorroh extension of R by
the ring of integers Z (see [3]). Then D(Z,R) is the ring defined by
the direct sum Z @ R with componentwise addition and multiplication
(n,7)(m,s) = (nm,ns + mr + rs) where (n,r), (m,s) € D(Z,R). It is
clear that C(D(Z,R)) = Z & C(R). The identity of D(Z, R) is (1,0) and
the set of all nilpotent elements is nil(D(Z, R)) = {(0,r) | » € nil(R)}.
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Theorem 2.17. Let R be a ring. Then R is a CN ring if and only if
D(Z, R) is CN.

Proof. Assume that R is CN. Let (a,7) € D(Z, R). Since R is a CN ring,
r = c+n for some c € C(R) and n € nil(R). Then (a,7) = (a,c) + (0,n)
is the CN decomposition of (a,r). Conversely, let » € R. Then (0,7) =
(a,c)+(0, s) as a CN decomposition where (n,c) € C(D(Z, R)) and (0,n) €
nil(D(Z, R)). Then ¢ € C(R) and s € nil(R). It follows that r = ¢+ s is
the CN decomposition of r. Hence R is CN. O

Let R be a ring and S a subring of R and
T[R,S) = {(r1,72,"+* yTn,8,8,-+):r € R,s€S,n>11<i<n}

Then T'[R, S| is aring under the componentwise addition and multiplication.
Note that nil(T[R, S]) = T'nil(R), nil(S)] and C([T, S]) = T[C(R),C(R) N
C(9)]-

Proposition 2.18. R be a ring and S a subring of R. Then the following
are equivalent.

1. TR, S] is CN.
2. R and S are CN.
Proof. (1) = (2) Assume that T[R,S] is a CN ring. Let a € R and X =

(a,0,0,...) € T[R, S]. There exist a central element C = (71,79, ++ ,7p, 8,8, "

and a nilpotent element N = (s1,82,* , Sk, t,¢,+++) in T[R, S] such that
X = C + N. Then r; is in the center of R and s; is nilpotent in R and
a = r; + 81 is the CN decomposition of a. Hence R is CN. Let s € S. By
considering Y = (0,s,s,s,--+) € T[R, S], it can be seen that s has a CN
decomposition.

(2) = (1) Let R and S be CN rings and Y = (a1,a2,* "+ ,am, s, 8,8, ) be
an arbitrary element in T'[R,S]. Then there exist ¢; € C(R), 1 <1i < m,
c e C(R)NC(S) and n; € nil(R), 1 < i < m, t € nil(S) and such that
a;=ci+n;foralll <i<mands=c+t Let C = (c1,¢0,** ,Cm,C,0+)
and N = (ny,ng, ++ ,npm, t,t,-+-). It is obvious that C € C(T[R, S]) and
N € nil(T'[R, S]). Hence Y = C + N is a CN decomposition of Y. a
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3 Some CN subrings of matrix rings

In this section, we study some subrings of full matrix rings whether or not
they are CN rings. We first determine nilpotent and central elements of
so-called subrings of matrix rings.

The rings L+ (R) : Let R be aring, and s,t € C(R). Let L4 (R) =

a 0 O

{ |:sc d te| € M3(R) | a,c,d,e, f € R }, where the operations are defined
00 f

as those in M3(R). Then L4 (R) is a subring of M3(R).

Lemma 3.1. Let R be a ring, and let s,t be in the center of R. Then the
following hold.

(1) The set of all nilpotent elements of L, (R) is

nz’l(L(s,t) (R)) =

a 0 0
{ [sc d te} € Ly (R) | a,d, f € nil(R),c,e € R}.
0 0 f

(2) The set of all central elements of L(ss(R) is

a 0 O
O(L(s)t)(R)))={[SC d te

€ H(s,t)(R) l sa =sd,td=tf,a,d, f € C(R)} .

0 0 f
a 0 O
Proof. (1) Let A= |sc d te| € nil(L,uy(R). Assume that A” = 0. Then
0 0 f
a 0 0
a® = d* = f* = 0. Conversely, Let A = |sc d te} € (Lsy(R) with
0 0 f

a™ =0, d" =0 and f™ = 0 and n = max{ny,ng,n3}. Then A" = 0.

a 0 0 1 00
(2) Let A= [sc d te| € C(Ley(R))) and B= |s 0 t| € Lp(R)).
00 f 0 0 0
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By AB = BA implies sc+sd = sa and td =t f...cc.cccceviiiriiininiiinnns *)
0 0O
Let C=|s 0 t| e L(syt)(R)).
0 01
AC = OA implies s6.= 3d and df 4 te = tf..ormermrmsmmmmnsesemms ors (*¥*),
(*) and (**) implies sa = sd and tf = td. For the converse inclusion,
a 00
let A= |0 d 0| € L (R) with sa = sd, td = tf and a, d, f € C(R).
00 f
z 0 0 az 0 O
Let B = {sy % tu} € Ly(R). Then AB = {sdy dz e :}, BA =
0 0 w 0 0 tdu
za 0 O

sya zd tuf|. By the conditions; sa = sd, td =tf, sc =0, te = 0 and a,
0 0 of
d, f € C(R), AB = BA for all B € L;1)(R). Hence A € C(L(y(R)). O

Consider following subrings of L) (R).

a 0 0
%(L(s,t)(R)) = { [O a te} & L(s’t)(R) ] a, e € R}
0 0 a

a 0 0
C(Ley(R)) = { [sc d te} € Lisp(R) | a,d, f € C(R),c,e € R,sa = sd,td = tf}
0 0 f

It is easy to check that Va(Ls ) (R)) and C(L(sy (R)) are subrings of L,y (R).
Proposition 3.2. Let R be a ring. Following hold:
(1) R is a CN ring if and only if Va(Ls)(R)) is a CN ring.

(2) C(Ls(R)) is a ring consisting of elements having CN decomposi-
tions.
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(8) Assume that R is a CN ring. If for any {a,d, f} C R having a CN
decomposition a = z+p, d = y+q and f = z+r with {z,y, 2z} C C(R)
and {p,q,7} € nil(R) satisfy sz = sy and ty = tz, then L;(R) is a

CN ring.
a 0 O
Proof. (1) Assume that Risa CNring. Let A= |0 a te| € Vo(Liy(R)).
0 0 a
There exist ¢ € C(R) and n € nil(R) such that a = ¢+ n. Then C =
c 00 n 0 0
0 ¢ 0 € C(Ly(R)) and N = |0 n te| € nil(Va(Ly(R))) and
0 0 ¢ 0 0 nj]
A = C+ N is the CN decomposition of A in Vo(L(s4(R)). For the in-
[r 0 0
verse implication, let » € R and consider A = |0 r 0| € Vo(L(sy)(R))
00 r
a 0 O p 0 0
There exist C = |0 a te| € C(Va(Ley(R))) and N = |0 r tu| €
0 0 a 0 0 v

nil(Vo(L(s1(R))). Then a € C(R) and p € nil(R) and 7 = a + n is the CN
decomposition of 7. Hence R is a CN ring.

a 0 0
(2) Let A = [sc d te| € CNey(R). Set C =

00 f

a 0 0
0 d 0| and N =
00 f

0 00
A =C+ N is the CN decomposition of A.
a 0 0
(3)Let A= |sc d te| € Lsyy(R). Leta=x+p, d=y+qgand f = z+r
0 0 f
denote the CN decompositions of a, d and f. By hypothesis sz = sy and
ty = tz. By (2) A has a CN decomposition in L4 (R) as A = C'+ N where

0 00
[sc 0 te|. By Lemma 3.1, C € C(Ly(R)) and N € nil(L(s4(R).

z 0 0 p 0 0
C=10y 0] €eC(Lupn(R) and N = |sc q te| €nil(Ly(R)). O
0 0 =2 0 0 r
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Corollary 3.3. Let R be a ring. If Ls4(R) is a CN ring, then R is a CN
Ting.

a 0 0
Proof. Assume that L, (R)isa CNringandleta € Rand A = [0 a 0f €
0 0 a
z 0 0
Ls)(R). By hypothesis there exist C = |sy z tu| € C(L4(R)) and
0 0 w
n 0 O
N = |sc m te| € nil(Liy(R)) such that A = C'+ N where z € C(R)
0 0 &k
and n € nil(R). Then a = z + n is the CN decomposition of a. a

There are CN rings such that L) (R) need not be a CN ring.

100
Example 3.4. Let R=Zand A= |3 2 2| € L¢1,;)(R). Assume that
0 0 3
A = C+ N is a CN decomposition of A. Since A is neither central nor
nilpotent, by Lemma 3.1, we should get A had a CN decomposition as

1 00 z 0 0
A=C+ N whereC= |0 1 0| € C(L,y(R)) and N = lic Yy e} €

0 01 0 0 =
nil(L1,1)(R)) where {x,, 2z} C nil(Z). This leads us a contradiction in Z.

Proposition 3.5. R is CN ring if and only if so is L) (R).

Proof. Note that L) (R) is isomorphic to the ring R x R x R. By Propo-
sition 2.16, [[,c; R; is a CN ring if and only if each R; is a CN ring for each
1€ 1. O

The rings H(R) : Let R be a ring and s,t be in the center of R.

i

Hip(R) =

OO0
O QO
~ 00 O

] € M;3(R) |a,c,d,e,fER,a—d=sc,d—f=te}.
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Then H,4)(R) is a subring of M3(R). Note that any element A of Hs(R)

sc+te+ f 0 0
has the form c te+f el.
0 0 F

Lemma 3.6. Let R be a ring, and let s,t be in the center of R. Then the
set of all nilpotent elements of H, ) (R) is

a 0 0
m'l(H(s,t)(R)) = { |:C d
0 0

e| € Hsn(R) | a,d, f € nil(R),c,e € R}.
f

0
e

a 0
Proof. Let A= |c d € nil(Hs 4 (R)). There exists a positive integer n
00

such that A” = 0. Then a" = d" = f™ = 0. Conversely assume that a" = 0,
d™ = 0 and f* = 0 for some positive integers n, m, k. Let p = maz{n, m, k}.
Then A% = 0. O

Lemma 3.7. Let R be a ring, and let s and t be central invertible in R.
Then

Proof. [4, Lemma 3.1]. O

o0
O QO

0
e| € Hsp(R) | cie, f € C‘(R)}.
f

Theorem 3.8. Let R be a ring. R is a CN ring if and only if Hiss(R) is
a CN ring.

a 0 0
Proof. Assume that R is a CN ring. Let A = [c d e| € (Hpy(R)).
00 f
Then a = ¢; +ny1, d = ¢y + ng, f = c3 + N3, ¢ = c4 + Ny, € = ¢5 + Ny With
{61702,c3ac4305} C C(R)a {nlan2>n3,n4$n5} gnll(R) Let €1 — Cp = S8C4,
C1 0 0
Cp—cC3=tcs, Ny —ng =8ng and ng —n3 =tns and C = |cg ¢ c¢5| and
0 0 C3
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s 0 0
N = |ng ny ns|. By Lemma 3.7, C € C(H(sy(R)) and by Lemma 3.6,
0 0 ns

N € nil(Hy(R)). Then A = C + N is the CN decomposition of A.
Conversely, suppose that H ) (R) is a CN ring. Let a« € R. Then

a 0 0
A= I:o a 0| € (Hiy(R)) and it has a CN decomposition 4 = C + N

0 0 a
z 00
where C = |y 2 u| € C(Hyy(R)) with {y,u,v} € C(R) and N =
0 0 v
M1 0 0

ny nz ng| € nil(Hey(R)) with {n1,n3,n5} C nil(R). Then a = 2 + n;
0 0 ns
is a CN decomposition of a. O

Proposition 3.9. Uniquely nil clean rings, uniquely strongly nil clean rings,
strongly nil *-clean rings are CN.

Proof. These classes of rings are abelian. Assume that R is uniquely nil
clean ring. Let e be an idempotent in R. For any r € R, e + (re — ere)
can be written in two ways as a sum of an idempotent and a nilpotent as
e+(re—ere) = (e+(re—ere))+0 = e+(re—ere). Then e = e+(re—ere) and
er —ere = 0. Similarly, e+ (er —ere) = (e+(re—ere)) +0 = e+ (er —ere).
Then 0 = re — ere = re — ere. Hence e is central. O

The converse of this result is not true.
Example 3.10. The ring H(o0)(Z) is CN but not uniquely nil clean.
Proof. By Theorem 3.8, H)(Z) is CN. Note that for n € Z has a uniquely

a 0 0
nil clean decomposition if and only if n=0o0orn=1. Let A= |¢c a e]| €
0 0 a
Hoo(R) with a ¢ {0,1}. Assume that A has a uniquely nil clean de-

z 0 0
composition. There exist unique E? = E = |y = u| € Ho,0)(R) and
0 0 =z
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g 00
h g 1
0 0 g
uniquely nil clean decomposition. So a = z + ¢g has a CN decomposition.
This is not the case for a € Z. Hence H (0,0)(Z) is not uniquely nil clean. [

N = € N(Hqp)(R) such that A = E + N. Then A has a

Generalized matrix rings: Let R be ring and s a central element of
R. Then [g g} becomes a ring denoted by K, (R) with addition defined
componentwise and with multiplication defined in [6] by

ar 1| |ag Ta| _ |arap + ST1ys  a1T2 + T1by
n b |y2 bo yiag +b1ys  sy1xo + bibo |’

In [6], K,(R) is called a generalized matriz ring over R.

Lemma 3.11. Let R be a commutative ring. Then the following hold.

(Ummwm=ﬂgﬂemmnm@gmmﬁ

(2) C(Ko(R)) consists of all scalar matrices.

Proof. (1) Let A = [a v

c d

} € nil(Ko(R)). Then A% = L (a‘i 2 b(@(; d)}

veey

on n 9i—1 i1
Coaom a ' e b(a* +d) .
o AT = [Z?zlc(azz_l + 2 . Hence A € nil(Ky(R))
if and only if {a,d} C nil(R). O

Lemma 3.12. Let R be ring. Then R is a CN ring if and only if D,,(Ko(R))
is a CN ring.

o o] € Dal(olR))

By assumption a = ¢; + n; where ¢; € C(R) and ny € nil(R). Let C =

%1 COJ € C(Dy(Ko(R))) and N = ["(’)1 ?fj € nilDy((Ko(R))). A =C+N

is the CN decomposition of A.

Proof. Necessity: We assume that n = 2. Let A =
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a

Sufficiency: Let @ € R. Then A = [O

2} € Dy((Ko(R))) has a CN

C1 0

0 C1

N = [%1 21] € nil(Dy((Ko(R)))) where ¢; € C(R) and n; € nil(R).
1

By comparing components of matrices we get a = ¢; + n;. It is a CN

decomposition of a. a

decomposition A = C + N with C = [ } € C(Dy((Ko(R)))) and

Note that Ky(R) need not be a CN ring.

Example 3.13. Let A = (1) 8

A = C+ N where C € C(Ky(Z)) and N €nilKy(Z)). Then we should have
G = {z g] and N = [1 ~% 0 ] These imply = = 1 or z is nilpotent.

€ Ko(Z) have a CN decomposition as

0 0 -
A contradiction.
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