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Abstract

The Hamilton-Jacobi formalism of constrained systems is used to study
superstring. That obtained the equations of motion for a singular system
as total differential equations in many variables. These equations of motion
are in exact agreement with those equations obtained using Dirac’s method.
Moreover, the Hamilton-Jacobi quantization of a constrained system is dis-
cussed. Quantization of the relativistic local [ree field with linear velocity
of dimension D containing second-class constraints is studied. The set of
Hamilton-Jacobi partial differential equations and the path integral of these
theories are obtained by using the canonical path integral quantization. We
figured out that the Hamilton-Jacobi path integral quantization of this sys-
tem is in exact agreement with that given by using Senjanovic method.
Furthermore, Hamilton-Jacobi path integral quantization of the scalar field
coupled to two flavours of fermions through Yukawa couplings is obtained
directly as an integration over the canonical phase space. Hamilton-Jacobi
quantization is applied to the constraint field systems with finite degrees
of freedom by investigating the integrabilily conditions without using any
gauge fixing condition.
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1 Introduction

The generalized Hamiltonian dynamics describing systems with constraints
was initiated by Dirac [1, 2], who established a formalism for treating con-
straint singular systems. The presence of constraints in such theories re-
quires care when applying Dirac’s method, especially when first-class con-
straints arise since the first-class constraints are generators of gauge trans-
formations which lead to the gauge freedom. Dirac showed that the algebra
of Poisson brackets determines a division of constraints into two classes:
so-called first-class and second-class constraints. The first-class constraints
are those that have zero Poisson brackets with all other constraints in the
subspace of phase space in which constraints hold; constraints which are
by definition second-class. Most physicists believe that this distinction is
guite important not only in classical theories bul also in quantum mechan-
ics [3, 4].

As a first step in the present work, we intend to study a singular sys-
tem with Lagrangian describing superstring [rom the point of view of the
Hamilton-Jacobi formalism which has been developed by Giiler [5, 6] to
investigate constrained systems. The equivalent Lagrangian method [7]
is used to obtain the set of Hamillon-Jacobi partial differential equations
(HIPDE). The study of such systems through Dirac’s generalized Hamilto-
nian formalism has already been extensively developed in literature [3, 4] to
investigate theoretical models in contemporary elementary particle physics
and will be used hers for comparative purposes.

Despite the sucesss of Dirac’s approach in studying singular systems,
which is demonstrated by the wide number of physical systems to which
this formalism has been applied, it is instructive to study singular systems
through other formalisms, since different procedures will provide different.
views for the same problems, even for nonsingular systems. The Hamilton-
Jacobi approach thas we study in this work, is applied to some physical ex-
amples [8, 9, 10, 11, 12, 13]. But it is still lacking to a better understanding
of this approach utility in the studying singular systems, and such under-
standing can only be achieved through its application to other interesting
physical systems. From our aims in this work is to treat the superstring
constraint system by the Hamilton-Jacobi approach and compare the re-
sults to those obtained through Dirac’s method.

In the casc of unconstrained systems, the Hamilton-Jacobi theory pro-
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vides a bridge between classical and quantum mechanics. The first study of
the Hamilton-Jacobi equations for arbitrary first-order actions was initiated
by Santilli [14]. The quantization and construction of functional integral for
theories with first-class constraints in canonical gauge was given by Faddeev
and Popov [15, 16]. Faddeev's method is generalized by Senjanovic [17] to
the case of appearance of the second-class constraints in the theory. More-
over, Fradkin [18] considered quantization of bosonic theories with first- and
second-class constraints and the extension to include in such gauges. Git-
man and Tyutin [3] discussed the Hamiltonian formalism of gauge theories
in an arbitrary gauge and the canonical quantization of singular theories. In
the Hamiltonian-Jacobi approach, the distinction between [irst- and second-
class constraints is not necessary. The equations of motion are written as
total differential equations in many variables, which need to investigate the
integrability conditions. In other words, the integrability conditions may
lead to new constraints. Moreover, it is shown that gauge fixing, which
is a basic procedure to study singular systems by Dirac’s method, is not
necessary if the canonical method is used [7]. The path integral formulation
based on the canonical method is obtained in Refs. [19, 20, 21, 22].

In Ref. [23], We have studied successfully the first-class constrains in
canonical gauge by applying the Faddeev and Hamilton-Jacobi methods to
obtain the path integral quantization of the scalar field coupled minimally
to the vector potential. That led to the same results by the two methods
which prove that the Hamilton-Jacobi method apple to quantized the first-
class constraints. For more complement of confirmation the successful of
Hamilton-Jacobi method, we quantize the relativistic local free field with a
linear velocity of dimension D with the second-class constraints. The path
integral quantization of this field is obtained by using the Senjanovic and
Hamilton-Jacobi methods. We noticed that Faddeev [23], Popov and Sen-
janovic treatment need gauge-fixing conditions to obtain the path integral
over the canonical variable, which is not always an easy task. However, if
the Hamilton-Jacobi approach [5, 6] is used, the gauge fixing is nol nec-
essary to analyze singular systems [9]. From the previous comparison, we
figure out the ability and simplicity of using the Hamilton-Jacobi approach
for studying the constraint systems. So, in the end, we get the path integral
quantization of the scalar field coupled to two flavours of fermions through
Yukawa couplings by using Hamilton-Jacobi quantization.
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2 Hamilton-Jacobi Approach

In this section, we approach the constrained systems by Hamilton-
Jacobi treatment, which solves the gauge-fixing problem naturally.
Giiler [5, 6] has developed a completely different method to investigate sin-
gular systems. He started with the Hess mairix elements Ay of second
derivatives of the Lagrangian £ = L(i;, d¢;, 7), ¢ = 1,...,n, which defined
as

s (52[,(1,0,’, &,oi, T)
T T 6(0p)5(0)

of rank (n —r}, r < n, with dependent momenta r. The equivalent La-
grangian method (7] is used to obtain the set of Hamilton-Jacobi Partial
Differential Equations (HJPDE). The generalized momenta corresponding
to generalized coordinates g; are defined as

__sc
= 50up)’
‘h'j = “‘?—L
‘)(Bu‘ﬁj),
where ; are divided into two sets @, and z;. Since the rank of Hess matrix
is (n — ), one may solve Eq.(2) for 8,9, as

SR a2 (1)

ea=12....n—7, (2)

J=n=r+l,...in, (3)

BuiPa = 0upa( s Tay 104 Xps) = Wa (4)
By substituting Eq. (4) into Eq. (3), we get
e
d(Buip;) Hupa=wa

which indicate to the fact that the generalized momenta 7; depend on m,.
That is a normal result of the singular nature of the Lagrangian.
The canonical Hamiltonian H, is given by the following definition

Ty = = _’Hj(?’i‘ aptp,,, Mas X/.t) : (5)

7{0 = _E(ﬂpi! 8}4§0U) a;(%x = "-“I(H Xu) + Wawa + Wj'a;x{i;‘jiﬁg’:_ny * (6)

The expression of the set, of Hamilton-Jacobi Partial Differential Equations
(HJPDE) is

7S ?:) A -

» O o
dpy

%'0 (‘.", wU) :roﬂl ';T?' = JX,'.A
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T —zi —_?.;9. = 8
w| T Py Py 7'.1—6?%1“0—6}(“ =My ()

where S being the action.
Egs. {7) and (8) may be expressed in a compact form as

-3 .
68 68
H:. ("s Yuy Yo, T = E, Mo = E) =0, (9)
a=0n—r+1,...,n.
where
Hy =mo+Ho =0, (10)
H, =mj+H; =0. (11)

Here Hg can be interpreted as the generator of time evolution while H; are
the generators of gauge transformation.
The fundamental equations of the equivalent Lagrangian method are

3 :
= = _HO(’roiaéu!r”mWa;Xp)a '\12)
XI‘
Ef 3s
T, = Loy — = —H;, (13
0a 8 6(10}' : }

with @y = x,. That gives the equations of motion as total differential
equations in many variables as

dip, = -—(s-_;-#'!dx,,, r=01,...,n, (14)

fy

—

o H! p
dir, = — 6;l°‘dxa, a=1,...,n—r, (15)

a

TH .

dm, = — = AN p=n—r+1,....,n, {16)

TH:
dzr(-Ha"l'ﬂ'n, 57?a) dxn, a=0,n"'7‘+1:-":fn‘1 (]7)
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where Z = S(Xa,wa). These equations are integrable if and only if

dHl =0, (18)
dHY = 0, B=12,...,r. (19)

In the case of not satisfied the conditions (18) and (19) identically, one
has to consider them as new constraints and then we examine again the
variations of them. Onec is repeating this procedure until obiain a set of
conditions with all variations vanish.

The investigation of the integrability conditions (24, 25| can be also done
by using the operator method, where the linear operators X, corresponding
to the set (14 - 16} are defined as

, = (~5__‘f g b 1 O ¥ L SHIN\Of
Xof (X8, ¥as Tay %) —3X;+ R b‘f,;;*‘ — Ho+ 7, % o
(20)

The system is integrable, il the bracket relations

[Xas Xglf = (XaXpg— XaXo)f =CLXofi Voa,8,v=0n-r+1,...,2,

i21)
are hold. If the relations (14 - 16) are not satisfied identically, we add the
bracket relations, which cannot be expressed in this form as new operators.
So the numbers of independent operators are increased, and a new complete
system can be obtained. Then the new operators can be written in the
Jacobi form, and we fined the corresponding integrable system of the total
differential equations.

3 Path Integral Quantization

In this section, we briefly review the Senjanovic’s and Hamilton-Jacobi
methods for studying the path integral quantization of constrained systems.

3.1 Senjanovic Method

We generalize Faddeeve’s method [15] to the case when second-class con-
straints are present. This generalization is called Senjanovic’'s method.
Consider a mechanical system with o first-class constraints ¢, 3 second-
class constraints 8;, and the gauge condilions associated with the first-class
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constraints x,. Let the x, be chosen in such a way that {x.,xs} = 0.
Then the expression for the S-matrix clement is [17]

|81ty = [ean i [~ (i - )| I] dutatroe), (22
i t

and

(3

dﬂ'(le) . (H 6(Xa)‘s(¢a}) detll{)(azéa}“

a=1
2 n
x ] 8(6s) det)|{0n, 0s}112 T [ dps da®. (23)
=1 i=1

where Hp is the Hamiltonian of the system and du(g,p) is the measure of
integration.

3.2 Hamilton-Jacobi Quantization

In Refs. [19, 20, 21, 23, 24, 25, 26|, the path integral formulation of the
constrained systems is studied. For computing the Hamilton-Jacobi path
integral, onc has to consider a singular Lagrangian as seen in section TI.
The canonical Hamiltonian Hy defined in Eq. (6), and the set of HJPDE is
expressed in Egs. (7) and (8). As we define pgy = % L,;;"’ and p, = .*JSg;.:ua?
with 2y = { and S being the action. The total differential equations given
in (14 - 17) are integrable if (18) and {19) are hold [26]. If conditions (18)
and (19) are not satisfied identically, one considers them as new constraints
and again consider their variations.

Thus, repeating this procedure one may obtain a set of constraints auch
that all variations vanish. Simultaneous solutions of canonical equations
with all these constraints provide to obtain the set of canonical phase space
coordinates (g,, po) as functions of ¢,, besides the canonical action integral
is obtained in terms of the canonical coordinates. H) can be interpreted as
the infinitesimal generator of canonical transformations given by parameters
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ta. In this case path integral representation may be written as

o 1D & SH'
{Qut | S| In) = j qu“dp“m:p /f- (~- Hy o+ P;ray—)&) diy
o=l o i

a=1,...,n—0p, a=0n—p+1,...,n. (24

In fact, this path integral is an integration over the canonical phase-space
coordinates (g%, p®).

4 Hamilton-Jacobi treatment of superstring

In this section we treat supersting constraint system by Dirac’s method and
then apply Hamilton-Jacobi method.

4.1 Dirac’s formulation of superstring

Consider a Lagrangian describes a superstring svstem
1 — . 1. y
L= —El'- (BQ_X”BQXH -t “P"‘aa'wu) T .7°A(r - Z;]' s Faﬁ ) '\25)

Where A” is a world sheet potential analogous to the electromagnetic po-
tential. The world skeet current density

I o ;
Ja = 3= g p*v,, (26)

acts as a source for the gauge field (A?), and the electromagnetic tensor is
defined as F*? = 9 A% — 9F A=

The Lagrangian (25) is singular, since the rank of the Hess matrix (1)
is four. The generalized momenta (2) and (3) can be written as

oL )|

Du = axe e X, (27)
p%‘:%‘;=O=~H;., (28)

M)
=L Sgep. m, (29)
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FA A ,
ﬂé e ai - _Fn.O . {30)
a4;
w“:éfi =0=-H,. (31)
A,

Equations (27) and (30}, respectively leads us to express the velocities X*
and A, as _
X¥=—mp*, (32)

Ai=—mm+8A. (33)
The Hamiltonian density is given by
My =— g(p"‘ pu+ )+ 3 A

+ ;—ﬂ[f?z-x “O X, ~ ot B, + g P p U An + %F"' F). (39

The total Hamiltonian density is consiructed as

Hp=- g(p“ Pu + 7 w) + Ay + %[{‘)‘-X” FX,—ip*(p* 6

+igp® Ag )i + %F"' ] + Mg + () — %?7)”9") + Mo, (35)
where Ag, Ay and A are Lagrange multipliers to be determined. From the

consistency conditions, the time derivative of the primary constraints should
be zero, that is

H'g = {Hy,Hr} = %(ip*a,- — gp™ Au)¥p + 537;;;0 dp =0,  (36)
By = {H)},, Hy} = —%@“(i‘a_zp" + gp™ Aa) — QL)‘W’D s S
T T
By = {H, He) = 8t — % B, 0. (38)
Relations (36) and (37) fix the multipliers Ay and Ay respectively as
Ay = ~(0°p' B + iq p° p* Au) by, (39)

=, .
Mg = =93 p'p” —iqp® p° Aa) . (40)
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Iiq. (38) lead to the secondary constraints
3 l _— N
H! =8 — — g #p%, =~ 0. (41)
27 :
There are no tertiary constraints, since
H* = {H!,Hr} =0. (42)

By taking suitable linear combinations of constraints, one has to find the
first-class, that is

‘b1=Hi=7l'0, (43}
whereas the constraints
— / —
b, = HTE = p%, (44)
=H =p* — B S 45
q’3 Hy’; P:, o ?1() o2, ( )
z )5 L
Oy = H{ = ' — > qp *p01h,, (46)
are second-class.
The equations of mosion read as
X# = {X*, Hp} = —mp", (47)
U* = {§4 Hr) = g, (48)
h# = {3, Fr} = Dy, (49)
A= {A' Hp} = —(m7* — 8;A0), (50)
A® = {A° Hp} = ), (51)
; L o e
bu = {ps, Hr} = = d'a X", (52)

; ) 1 A : 2 JE
Pf; = {P:}-, Hyp} = o [(ip* & — gp™ Aa)u + 12y 0%, (53)
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e ¢ i o 1 5

?fw'_'{p‘w,HT] == —E ’t,';‘("d_ipa + quafia)) (54)
S S sodid I Tu' 5ol 5
T = {F,H’r}— -2—;(2 [',z—q%d f wtt)a (05)
-0 a a 1 A_-;.\ O :
a° = {n, Hp} = 9w — 5 9P 0 . (56)

Substituting from Eq. (40) into Eq. {48), we gel
B4 (5 — igha) = 0, (57)
and from Eq. (39) into Egs. {49) and (53), we have

(B + igAa) ™t = 0, (58)

ph=0. (59)

i
We will contact oureselves with a partial gauge fixing by introducing
gauge constraints for the [lirst class primary constraints only, just to fix the
multiplier A; in Eq. (35). Since #° is vanishing weakly, a gange choice near
at hand would be
P} =Ay=0. (60)
But for this forbids dynamics at all, since the requirement Ay = 0 implies
AL =0.
In the following section the same system will be discussed using Hamilton-
Jacobi approach.

4.2 Hamilton-Jacobi formulation of superstring

The set of Hamilton-Jacobi Partial Differential Equations (HJPDE) (7) read
as

[_[6 =po+ Ho=0, (61)
L B DI RRSEY | S,
Ty = b+ Hy = pl — — #p° =0, (63)

2




-376 -
H; = ﬂu'i‘[[l =‘;To=0. (64}

The equations of motion are obtained as total differential equations fol-
lowsa:

4 BH— (')I{’t, S
IA’“ d.l{o dt -l— ‘J d’? : W '.,‘“ d[:{l dAD
8] m apgz dpP ap“
= = p“ dt, (65)
' y (')H aHI ]
dA* = %ﬂrﬂdu o —L @+ B % dif - r%ﬁ—dA"
= —(nx —();Ao) dt , (66)
9”{, (H"J = (')H"*\ AH; 0
= — —_ == dipy, — —
dpy X, X, dt X dy* 3X, dib, X, dA
= Loaxea, (67)
=
PYir BHL _ B, arr
B i 0 SRCE, R s W, 4 > 1 0
ToT Toge T e T g W g M
1 I i x . 3
= 5= (10" & — qp” An)udt + % podi, (68)
sH  BH. _  BH HH!
dpt ==y S s L TSN 4D
& (.,"i""a ; I, Y ey ks My :
=-2iﬂ(¢ai13"p*+q$“p" Aqs) dt, (69)
ot ) U, S Y
dr’ aA v aA T 9A; 4 U

= — (23‘1’,‘; —qiptp piby) dt, (70)
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aI OHy _  OH., OH:
0 == ——0 — hid v' 1 — _v S *‘“'—1" 0
dw 97, dt 3, dyp 57 didy, A, dA
D T -
={Gn" — o A P )dt . (71)

The integrability conditions imply that the variation of the constraints
IT7, Hy and HY should be identically zero; that is

dHg = dpl =0, (72)
difl, = dpt ;;j dpte® =0, (73)
Al = dmy =0. (74)

The vanishing of total differential of /7] leads to a new constraints
’ 3 1 s ,
H{ = oy — 5 q*p®P, . (75)

When we taking a gain the total differential of IT}', we notice that it. vanishes
identically,

dH! = 0. (76)
From Eqs. (65) and (66), respectively we obtain
Xt = —mp*, (77)
and N ‘
A = —(r7' — % Ap) . (78)

Substituting from Egs. (68) and (69) into Egs. (72) and (73) respectively,
we get
(0 +1qA)p* ¥, =0, (79)

B#p*(B — igAa) = 0. (80)
Also from Egs. (67) and (69 - 71), we get the following equations of motion:

Fox", (81)

J |~

Du =
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Ly 1' R "— i - P
Py = =5 9 *(0ip" + ig p* A}, (82)
ig 1 - .
= ;;-T(zalﬁj—Q?;}“p!ﬁ;uL (83)
P N P Y
T = o —%qw p Wy (84)

Substituting from Eq.(79) into Eq.(68), we have
)c)% =, (85)

As s comparison between the above two methods, we get that the Hamilton-
Jacobi method end Dirac’s method give the same equations of motion.

5 Path Integral Quantization of The Rela-
tivistic Local Free Field Theory

As an example of a singular system described by a first-order action, namely
a system whose Lagrange function is linear in the velocities. However, the
associated constraints are all second-class. Let us consider the relativistic
local free field theory of spin % in a Minkowski spacetime of dimension D.
As usual, spacetime coordinates are denoted as =*,y#(x = 0,1,...,D — 1)
and space components are labelled by i,7 = 1,2,..., /2 —1. The Minkowski
matrix n* is chosen with a signature with mostly minus signs, and we also
set i = ¢ = 1. The system is described by the first-order action

SWl = [ =1, 0,). (36)

with the local lagrangian density function
A+1

2

l(l‘l) 3,:.%'3) =1

28 ANl i —, :
Wy O + i—z— Oty — majnp . (87)

Here A is a parameter, the matrices v define the Dirac algebra in D-
dimensional Minkowski spacetime

T P =2n T =g (88)
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and ¥,(x)(a = 1,2,...,2)) are Grassmann even degrees of freedom
defining a Dirac spinor, with

B(z) = i) 0. (9)

For simplicity, the fields ¢'{x) are assumed to fall off sufficiently rapidly at
infinity for all practical purposes.

The Lagrangian (87) is singular, since the rank of the Hess matrix (1) is
Zero.

Let us first discuss the system using Hamilton-Jacobi approach. In this
approach the canonical momenta (2) and (3) take the forms

AL A4+1—, .
p= m - 2—2—' wYy = ]], |‘90)
e AR
= = 0., = PERIEN
= — =1 vy =—H. 91
p 080w il Y Y1)

where we must call attention to the necessity of being careful with the spinor
indexes. Considering, as usual ¥ as a column vector and 10 as a row vector
implies that p will be a row vector while § will be a column vector.

The usual Hamiltonian H, is given as

Ho = —L + 8otb pu + 6ot oz , (92)
Pu=—Hy, Pi=—liz
or,

A4+1— - - - .
Hy = —i% WO, ~ 2._/\_5_1 Ay +mand, a=1,2,3. (93)
The set of Hamilton-Jacobi partial differential equation (HJPDE) are

’ .A+1-‘,‘a, ) ,A"‘l TEAY, i
Hy=py+ Hy=po— gsn= POt — g Ot ¥* b +mapp,  (04)

<

A+1— :
H=p+H=p—1 s 1Py =0, (95)

F=p+HA=p—i—— "% =0. (96)
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Therefor, the total differential equations for the characteristic (14 - 16) are:

d = di, (97)

dp = (-/—\;2_—1- Dptpy® — m'z,_')) dr + i)\ ik di, (99)
A+1 A4l

dp = (v—-}— Dily® — m'd)) dr +1i az APdyp . (100)

"To check wether the sct of equations (97 - 100) is integrable or not, we have
Lo consider the total variation of the consiraints. Tn fact

+1

A =
dil’ = dp —i—— ~"diy = 0, (101)
— A=1 S rumr
dH’:d]’)—zT yldah = 0. (102)
The constraints (95) and (96), lead us to oblain
A = i(i8, 57" + mp)ydt , (103)
and
dip = iy (v Dpnp — mub)dl . (104)

Then, we conclude that the set of equations (97 - 100) is integrable.
Making use of Eq. (17) and Eqgs. (94 - 96), we can write the canonical
action integral as

\ “ ,/\ ; 1 — « .A T ]. — ) =~
7 = / dx (z :;_ Wy O + = OuyH — m'l,fnp) . (105)
Now the S-matrix element is given by
(85,69, Fu) = [ dwd

<13 -1 ALk el
exp [’d{ / d*z (’iA ;— - Wy Gl + 1-1-\—2— Dby — mq;'n,-';) }] . (106)
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Now we will apply the Senjanovic method to the previous example.
The total Hamiltonian is given as

Hy = Iy +vH +7H', (107)
or
_)\ : 1'-,— a . = N Y Ry
Hy = —i Yy Oth — i Oy Y + madep

A+1— A—1
+uv(p—i %) + PP -4

%), (108)

where v and ¥ are Lagrange multipliers to be determined. From the consis-
tency conditions, the time derivative of the primary constraints should be
zero, that is

H' = {H' Hy} = -i0,04* —myp —iv~° =0, (109)
H = {H Hr} =i 0gp — mop + i~ ~0. (110)
Egs. (109) and (110) fix the multipliers ¥ and v, respectively as
7 = — B0y — im)y°, (111)
and
v=—2"v28, +im) . (112)

There are no secondary constraints. By taking suitable linear combinations
of constraints, one has to find the maximal number of second class only,
there are

@ =11’ =p—i—*'\; “By, (113)
and
= 2 WP e

(I)2=H =p-').—2-—"’( 'lrf). (114)

The total Hamiltonian is vanishing weakly. It can completely be written in
terms of second-class constraints as
A+l A-=1

Hr = —i—— " Oap — i

<

By + mpY + v dy + TD, . (115)
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The equations of motion are read as

¥={¢,Hr}=v, (19
¥ = {¥,Hr} =7, (117)
. _— - _A=1 4 .
p={p, Hy} = —i0,u7® — mp +iv ¥, (118)
and i
P = {P, Hr} = i7°0,9 — mwp + i —— 0. (119)

2

To obtain the path integral quantization, taking into our consideration
that we have two constraints (primary constraint), which are second-class
constraints, then we make use the Senjanovic method Eq. (22) one obtains

s
(:Ou.t?._qlfn.) = /e.r-p [Z/ (L’\’;‘ lvﬁ"}'-“@u",‘i‘-%«g'/\ - 1

By byteh — ~m,g'.;')) ]

o0
dt D1 DpDw Dy det(~1°1)
: A4+1— ¢ —
x 8(p —i2 = F0) 6(p — z‘.%a,ﬂqp). (120)

After integrating over p and p one can arrive at the result which has seen
in Eq. (106).

6 Hamilton-Jacobi quantization of the scalar
field coupled to two fLavours of fermions
through yukawa couplings

We consider one loop order the self-energy for the scalar field ¢ with a mass
m, coupled to two flavours of fermions with masses m; and my, coupled
through Yukawa couplings described by the lagrangian

Lt amed iz . ,
L= 5(0up)* = 5m%0" — 20" + 3 Do (78, — ma)bey
i

Tp [}{;O(E(I}U"(Z} + &’(211‘!‘}{1)% f-l' = 01 1 1 2! 3 ) (.'.2].:'
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where A is parameter and g constant, @, 4, and E(;-) are odd oncs. We are
adopting the Minkowski metric n,, = diag(+1, -1, -1, -1).

The Lagrangian function (121) is singular, since the rank of the Iless
matrix (1) is one. The generalized momenta (2, 3) are

oL .
o 8%, (122)
P = ’g‘L‘ = iiv'},-fﬂ = —Hyy, i=1,2, (123)
B'zpm
aL —
Poyy=—=—=0=—Hy. (124)
gy

Where we must call attention to the necessity of being carelul with the
spinor indexes. Considering, as usual ¥ as a column vector and E(i) as a
row vector implies that pg will be a row vector while 7y will be a column
vector,

Since the rank of the Hess matrix is one, one may solve (122) lor 3% as

Flp=p,=w. (125)

The usual Hamiltonian Iy is given as

Hy = —L + wp, + oty P + Botbyy Pes) s ~oa(i20)
Pro=—H Pay=—Hg
or
Ho = ~{1?, — Bupp) + S3P + NG = Pog (i7°0 — M
D—’,ZP,; 0P ‘P~2 @ 6(1'9 @\ Ya i W)

+go(boyde +Padm). =123, (127)
The set of Hamilton-Jacobi Partial Differential Equations {7) and (8) read
as

H(I) = po -+ Hy

1 1 1 AR Ny i
=pot 5(102.5 — Dupdi0) + §m29°2 + g/\9°3 — ey (17" 0 — ma )b

+ 99(Puyde + Pydm) (128)
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Hy =p + Hy =pw —i ¥y 1" =0, (129)
—E-’(i) . .75(:') 5 ﬁ(i) = 7—’(;] =0. (130}
Therefor, the total differential equations for the characteristic (141 - 16) are:
dip = pydr, (131)
diby = dibgyy (132}
Ay = dibgy , (133)
- 1 o~ > — ,
dp, = [mzfﬂ + 5)«#2 +9(bwyde + ’11(2)’4"(1})] dr, (134)
R =) K]
dpy = [1.‘!.)[1)(?:00’}'“ + ) —.’-gzpy'J(Z)J dr, (135)
R R 4 a ¥ el
dpgzy = |9 (10a7" + mp) + gy | dT, (136)

dpy = [ ~ (i7°0, — mu )Yy + gsm’f(z)} dr — iy"diqyy (137)

B

and
APy = [ — (i7" 0z — M)y + !]%‘3‘(1)] dr — i dfy) - (138)

To check whether the set of equations (131 - 138) is integrable or not,
we have to consider the total variations of the constraints. In fact

dH}y = dpg) — i diby* =0, (139)

dHy = dpy = 0. (140)

The constraints (129) and (130), lead us to obtain dy, and diy in terms
of di
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d(yyin® = [‘.Eu)(ign".’a + 1) + g Pgldt, (141)

A yiy” = [@7(2}@&7“ + mg) + g ldt (142)

iy diyyy = [—(i7%0, — m )y + g hyld, (143)
and

iy’ diig) = [~ (17°8s — ma)tbi) + g4 Y)dt . (144)

We obtain that the sct of equations (131 - 138) is integrable. Making use
of (17), and (128 - 130), we can write the canonical action integral as

= 1 i F g 5. adaas e e s
Z = / al":z,'ii(;ﬁ,9 + B,08%p) — Engoz - gl\zp“ + Wy (178, — madiby)
= g0(ay¥e + Pl , (145)

Now the path integral representation (24) is given by
'2 —
{out|S|In) = / H dip dp,, dipsy dipy
s

' 1 . 3 1 1
cxp {i [/ (1‘*:1:5(7)2,,, + Gpipdip) — Engoz - 6/\903

+ Y (198, — mi)d) — 9'»0('1.’_3(1)'8}(2) o {5(2',1.1'1(1))] } .
(146)

-7 Conclusion

In this paper, we have investigated three different constrained sys-
tems. Two of them are studied by using Dirac’s Hamiltonian formalism and
Hamilton-Jacobi approach. The third one quantized by Hamilton-Jacobi
quantization.

We have treated constrained system of the Lagrangian describing super-
string and have obtained the equations of motion of this system by Dirac’s
and Hamilton-Jacobi method. In the Dirac method the total Hamiltonian
composed by adding the constraints multiplied by Lagrange multipliers to
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the canonical Hamiltonian. In order Lo drive the equations of motion, one
needs to redefine these unknown multipliers in an arbitrary way. However,
in the Hamilton-Jacobi formalism, there is no need to introduce Lagrange
multipliers to the canonical Hamiltonian. Both the consistency conditions
and integrability conditions lead to the same constraints. In the Iamilton-
Jacobi formulation, the equations of motion are obtained directly by using
HIPDES as total differential equations.

Path integral quantization of the relalivistic local free field theory is
obtained by using the Senjanovic method and the Hamilton-Jacobi path
integral formulation. Both methods give the same results. However, in
the Hamilton-Jacobi path integral formulation, since the integrability con-
ditions dH' and dII' are satisfied, so this system is integrable, and hence
the path integral is obtained directly as an integration over the canonical
phase-space coordinates {1,v). In the usnal formulation, one has to in-
tegrate over the extended phase-space (p, 4,7, J) and one can get rid of
the redundant variables (p,5) by using delta function d(p — i23241°) and
5(p—1i2554%).  Furthermore, the scalar field coupled to two flavours of
fermions through Yukawa couplings are quantized as a constrained system
by using Hamilton-Jacobi quantization. That is no need to introduce La-
grange multipliers to the canonical Hamiltonian, then the Hamilton-Jacobi
s simpler and more economical.

As a conclusion, the Hamilton-Jacobi approach is always in exact agree-
ment with Dirac’s method. Both the consistency conditions and integra-
bility conditions lead to the same constraints. The singular system with
second-class constraints is quantized by Hamilton-Jacobi gquantization suc-
cessfully,. The Hamilton-Jacobi path integral quantization is simpler and
more economical. In Hamilton-Jacobi treatment, there is no need to distin-
ouish between first-clags and second-class constraints, and there is no need
to introduce Lagrange multipliers; all that is needed is the set of Hamilton-
Jacobi partial differential equations and the equations of motion. I the
system is integrable then one can construct the canonical phase space. In
hamilton-Jacobi quantization, the gauge fixing is not necessary to obtain
the path integral formulation for field theories if the canonical formulation
is used. Since this system is integrable, the path integral is obtained as an
integration over the canonical phase-space coordinates.
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