ON RIEMANN CONJECTURE

Jiang Yu

Guangzeng Group, fourth floor, number 10, Guangming East Road, Zengcheng City, Post Code: 511316, Guangdong Province, China jiangyugs@163.com

> Received December 18, 2019 Revised April 8, 2020

Abstract

This paper explains the variation of the even and odd number sets in a natural number set, as well as the composite number and prime number sets in an odd number set using the contraction and extension of the coordinate axes. In this study, a new explanation of the Riemann function $\zeta(s)$ is also introduced.

Key words: Natural numbers, even numbers, odd numbers, composite numbers, prime numbers, pattern

1 Introduction

By considering the following, through the contraction and extension of coordinate axes, we demonstrate that linear transformations can produce both even and odd numbers from subsets of a set of composite numbers.

A natural number n means 0, 1, 2, 3, 4, ..., including 0 and the positive integers. The set of natural numbers is represented by N. Natural numbers other than 0 and 1 are successors of the natural number 1, i.e.:

$$n=1+1+1+...$$

This is the basic property of natural numbers. The number n is called a superposition of n natural numbers 1.

A number that can be divided by 2 is called an even number, and the even number set is represented by N_0 . Numbers that are not divisible by 2 are called odd numbers, and the odd number set is represented by N_1 .

In the odd number set N_1 , any natural number indivisible by any factor except for 1 and itself is called a prime number. The set of prime numbers is represented by N_S . Natural numbers that are divisible by other factors are called composite numbers, and the set of composite numbers is represented by N_m .

2 Contraction and extension of coordinate axes

In the following considerations, we agree that n is a natural number, n_n (n_1 , n_2 , ...) is 0 or an integer, and x and y are arbitrary numbers.

The zeros and intervals of the Cartesian coordinates can be arbitrarily selected. Normally, we select the natural number 0 as the zero point of the coordinate and the natural number 1 as the coordinate interval. This coordinate system is called the " 1×1 " coordinate system and we get:

$$n=n_1. (1)$$

Each interval point of the " 1×1 " coordinate system represents a natural number, and the set of natural numbers is N.

We can also choose the natural number 0 as the zero point of the coordinate and the superposition of n^0 consecutive natural numbers 1 as the coordinate interval. This coordinate system is called the "1 \times n^0 " coordinate system, and we have

$$n=n^0n_1,$$
 (2)
 $n^0=1+1+...$

This process is called a contraction of the coordinate system, the contraction coefficient is expressed by δ^- , and we have:

$$\delta^- = n^0. \tag{3}$$

Each interval point of the "1 \times n⁰" coordinate system represents a natural number. When δ =2, the set of natural numbers is mapped to N₀ or N₁, which is:

$$n=2n_1,$$
 (4)

$$n=2n_1-1.$$
 (5)

Each interval of the "1 \times n⁰" coordinate system is divided into n⁰ equal parts. This process is called an extension of the coordinate system, and the extension coefficient is represented by δ^+ ; thus, we have:

$$\delta^+ = 1/n^0. \tag{6}$$

When $\delta^-\delta^+=1$, we get the "1 × 1" coordinate system, and the set of natural numbers is N.

3 Producing even and odd numbers from subsets of a set of composite numbers

The following considerations are based on those given above.

Natural numbers other than 0 and 1 can be represented by the following equation:

$$n=2n_1+3n_2.$$
 (7)

Given a choice of n_1 and n_2 that satisfies (7), we chose $x=n_1$ as the x-axis of the coordinate system and $y=n_2$ as the y-axis of the coordinate system. As a result, we have the following:

$$n=2x+3y, (8)$$

When $n_2=0$, $n=2n_1$, $N \in 0, 2, 4, 6, ...$

When $n_2=1$, $n=2n_1+3$, $N\in 1$, 3, 5, 7, 9, ...; the natural number 1 is at $n_1=-1$, $n_2=0$.

Through the following considerations, we obtain the variation pattern of the composite set N_{m} and the prime set N_{s} in the odd number set N_{1} .

For the sake of simplicity, we chose the natural number 3 as the zero of the coordinates ($n=2n_1+3$), and a composite number in the odd number set N_1 can be represented by the following equation:

$$n = (2n_1+3) \times (2n_2+3) = 2(2 n_1 n_2+3n_1+3n_2+3)+3.$$
 (9)

Assume

$$n_3 = 2xy + 3x + 3y + 3.$$
 (10)

When $n \in N_m$, x and y have one or more than one integer solutions, we have:

$$x=f(n_1), (11)$$

and

$$y=f(n_2)$$
. (12)

When $n \in N_s$, x or y has no integer solutions, we have:

$$x=f(n_1)+k, (13)$$

or

$$y=f(n_2)+k,$$
 (14)

where |k| < 1.

From Equation (9), when $n_2=0$ (when $n_1=0$, the proof is omitted), we have:

$$n=2(3n_1+3)+3.$$
 (15)

From Equation (15), when $\delta^+=1/3$, we have:

$$n=2n_1+9.$$
 (16)

We thus have the odd number set N_1 . After a simple derivation, we obtain the following three equations:

$$x=n_1,$$
 (17)

or

$$x=n_1+1/3,$$
 (18)

or

$$x=n_1+2/3.$$
 (19)

From Equation (16), when $\delta^+=1/2$, we have the following:

$$n = n_1 + 9.$$
 (20)

We thus have the natural number set N. After a simple derivation, we obtain the following two equations:

$$x=n_1,$$
 (21)

or

$$x=n_1+1/2.$$
 (22)

Next, we consider Riemann function $\zeta(s)$.

Riemann function $\zeta(s)$ satisfies the following algebraic relations:

$$\zeta(s) = 2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s).$$
 (23)

We already know that the trivial zeros of Riemann function $\zeta(s)$ are at s=-2n and the non-trivial zeros are at Re(s)=1/2.

From Equation (21) and (22), let's translate the x-axis by 1/2, we have the following:

$$x' = x + 1/2. (24)$$

From Equation (23) and (24), we have the following:

$$\zeta(s') = 2^{s'} \pi^{s'-1} \sin \frac{\pi s'}{2} \Gamma(1-s') \zeta(1-s')$$
. (25)

From Equation (25), we obtain the following conclusions:

The trivial zeros of Riemann function $\zeta(s')$ are at s' = -(2n+1) and the non-trivial zeros are at Re(s') = 0.

Assume

$$0 < \text{Re}(s) < 1/2$$
,

We have the following:

$$2n < |s| < 2n + 1$$
,

Where *s* is a non-integer.

4 Conclusion

Based on the equations above, it is proved that linear transformations can produce both even and odd numbers from subsets of a set of composite numbers.

References

- [1] Gong, Sheng. Concise Calculus (Fourth Edition) [M]. Beijing: Higher Education Press, 2006
- [2] Min, Yan. Primary Number Theory [M]. Beijing: Higher Education Press, 2003.
- [3] https://www.docin.com/p-1970518235.html