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Abstract

In this paper we first discuss isonumber theory, which was de-
veloped for applications in physics by R. M. Santilli. We then use
isonumbers of the first kind and the Paillier cryptographic system to
add an additional security degree of freedom to the image encryption
scheme, which we call the Paillier-Senegalese encryption process.

Following standard procedures we first separate a given RGB im-
age into its constituent channel images, use public encryption keys
in conjunction with the Paillier-Senegalese encryption function, to
encrypt each of the R, G, and B-channel pixel intensity values. The
encrypted channel images can be then combined and compressed if
necessary before transmission through a possibly unsecured commu-
nication channel. The transmitted encrypted image is subsequently
recovered by a decryption process which uses the Paillier-Senegalese
decryption function in conjunction with the private decryption keys.

We are conducting a number of the performance and security
analyses on the recovered and encrypted images in order to study and
verify their robustness relative to all desirable security metrics. The
complete results of our study will be reported later, but preliminary
evidence shows that, the use of isonumbers provide an additional
security degree of freedom for the production of encrypted images.

Copyright © 2018 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.
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1 Introduction

A number of image encryption schemes have been proposed in the past.
Image encryption schemes based on chaos in dynamical systems have been
proposed in [3], [15] and [19]. Pareek et al. [19], have developed an en-
cryption scheme which uses a 80-bit encryption key to initialize two chaotic
maps. G. Ye et al. [13], have proposed an encryption scheme based on
electrocardiography and autoblocking to generate the initial keys, which re-
moves the need for manual assignment. Singh et al. [16] have developed
an Elliptic Curve Cryptosystem, which one applies to a group of pixels
to obtain a corresponding cipher-image. In another direction, P. P. Dang
and P. M. Chau [20], have discussed an encryption scheme which uses the
Discrete Wavelet Transform (DWT) for image compression and the block
cipher Data Encryption Standard (DES) to produce a secure image. Image
encryption using Multi-orders of the Fractional Fourier Transforms has been
proposed by R. Tao, X. Meng, and Y. Wang [21]. In this case, the summa-
tion of different orders of the inverse discrete Fractional Fourier transform
(FRFT) is applied to the interpolated sub-images to create the encrypted
image.

This paper explores the application of isonumber theory to red green blue
(RGB) image encryption.

Purpose

In this paper we introduce the Paillier-Senegalese image encryption process
using the Paillier cryptographic scheme and Santilli’s Isonumber Theory
of the first kind (see [10]). The isonumber theory replaces the unit “one”
of normal arithmetic by a new unit called an “isounit”, which provides
an additional degree of freedom for the encryption process. We apply our
approach to the encryption and decryption of images in the visible range of
the electromagnetic spectrum.

The introduction of an isounit may he seen as a shared private encryption
and decryption key. We also note that our scheme possesses both public-key
and private-key characteristics, so it can be seen as a hybrid public-key and
private-key system. The major contribution of this paper is the introduction
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of an isounit as a private key and the development of this hybrid public-key
and private-key cryptographic system, allowing the improvement of security
by increasing the number of decryption keys required for an attacker to gain
access to the transmitted images.

Content

The paper is organized as follows: In Section II, we introduce the Santilli’s
isonumbers theory of the first kind. In Section III, we combine the isonum-
bers with the Paillier cryptographic scheme to produce Paillier-Senegalese
image cryptographic scheme. In Section IV we propose methods that will
allow us to analyze the performance and security for our image encryption
approach. Section V is devoted to our conclusion.

2 Santilli’s Theory of Isonumbers

In this section, we provide a brief introduction to Santilli’s Theory of Ison-
umbers. The origin of isonumbers can be traced at least back to 1978,
when Santilli published the second volume of his fundamental work on the
“Foundations of Theoretical Mechanics”. He was studying the more realis-
tic problem of local physical systems with dissipative forces as opposed to
the mathematically beautiful but physically incorrect case of local systems
without these forces. As first noted by Santilli, all of the nice mathematics
and geometry developed in the twenth century and used in physics to study
elementary particles fails. The failure follows because the special theory
of relativity does not apply for studies inside the proton (or inside a star),
where particles move in dissipative media (and not in a vacuum).

While looking for a way to extend the ideal mathematics, making it more
useful for physics, he discovered that all mathematical structures could be
preserved by replacing the normal unit by a strictly positive definite unit,
which need not be commutative and may depend on any number of physical
variables, change with time and have as many derivatives as needed to
reproduce experimental reality. This new unit he called an “isotope” (see
(5], [7] and [8]). The simplest case is that of the real and complex numbers,
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where the unit is the number one. Santilli began his study of this case with
his seminal paper on “isonumbers” (see [5] and also [9]).

Our interest is limited to isonumbers. To make the transition easy,

we consider the simplest example, which was used by Santilli to represent
antiparticles as particles moving backwards in time, providing a rigorous
foundation for an idea proposed by Feynman.
The real numbers is a field, which may be represented by a five-tuple
(R,+,0,+,1). Where zero is the unit for addition and one is the unit for
multiplication. Santilli noticed that mathematicians implicitly use a sense
of direction from left to right for R, so that we should write it as a six-tuple
(R,+,0,+,1,—). It now follows that, in practice, our real number system
is not symmetric. Santilli’s solution was to propose a new representation of
the real numbers (R, +, 0, *, 1, =), where the unit for addition is unchanged,
but the new unit for multiplication is now 1=-1. Thus,

axb=(—a)(~1)(=b) = —ab = ab. (2.1)

Santilli called (R, +,0, *, 1, +) the isotopic dual representation of the real
numbers. This is an example of Santilli’s Isonumber Theory of the Second
Kind, where the new unit, called isounit, is in the field (i.e. (=1) =1 € R).
We are interested in Santilli’s Isonumber Theory of the First Kind, where
the new isounit J is not in the field. Let the field F(a, +,.) be given (e.g., Zp,
with p prime) and let the isounit [ =171 ¢ F be an invertible quantity.
Let a new definition of multiplication be defined on F' using * = = T (see
[10]). This allows us to define a new field F'(@,+,*) (called isofield of the
first kind), with elements called isonumbers and rules given by:

A ~ a~ ~ A A~

=al, axb= (al)T(bl) = abl = ab
= (al) + (b]) = (a+b)] = a +b. (2.2)

0=0[=0

g>
G“)

3 The Paillier-Senegalese Algorithm

The construction of the Paillier-Senegalese cryptographic algorithm is ac-
complished in a three step process. The first step is the generation of
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the Paillier-Senegalese public and private isokeys required for encryption
and decryption. The second step is the definition and use of the Paillier-
Senegalese encryption function with the public isokeys to encrypt each of
the pixel intensity value from a given set of R, G, and B-Channel images.
The third step is the definition and use of the Paillier Senegalese decryption
function with the private isokeys for the decryption phase, recovering the
corresponding RGB images.

Let a RGB image be given with an 8-bit encoding for each channel. This
means that the pixel intensity values are in the range [0, (L — 1)], where
is L = 256. These pixel intensity values for each channel image can be
assumed to belong to the finite prime field Z, = {0,1,2, - (p—1)} of order
p = 257 representing the closest prime number after L = 256,

The key generation, encryption and decryption phases are as follows:

3.1 Public and Private Keys Generation

We begin with the use of the Paillier cryptographic system for generating
the public and private keys, which we use to generate our Paillier-Senegalese
cryptographic system public and private isokeys.

3.1.1 Traditional Paillier public and private keys generation

We randomly choose two large prime numbers ¢ and s, so that the greatest
common divisor (ged) of gs and (¢ — 1)(s — 1) is 1, that is

ged(gs, (g —1)(s—1)) = 1. (3.1)

The condition is satisfied if ¢ and s are primes with the same length. Our
next step is to compute the public key N, and private key A. This is done
by defining N = ¢ x s and, using the the least common multiple function
lem, to define A by:

A=lem(g—1,s—1). (3.2)

To compute the private decryption key p, we generate a random integer g €
Z3e = {1,2,...,(N? — 1)} such that the order [, of g is a multiple of N.
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The value of g can be also computed as ¢ = 1+ N when p and s have the
same length. The private decryption key p is then defined using the modulo
operator mod , by:

p={[L(g"* mod (N?))™} mod (N), (3.3)

where L[U] = (U — 1) N~1. Hence, the privation key needed for decryption
is (A, 1), while the public key needed for encryption is (N, g).

3.1.2 Paillier-Senegalese Cryptographic System Public and Pri-
vate keys Generation

The public and private isokeys for the Paillier-Senegalese cryptographic
scheme are described in this section. First, we randomly generate two large
prime numbers ¢ and s, and randomly generate the isounit I outside Zy.
For proof of concept, we have randomly generated the 200 digit integer

[ = 91446193624825680120842585289199005703827325309092129
498393744207361338371695567731788631147895697391520081713935620
65024462982808290015616340499507514219090543595507822577096302
2485699534833574025767.

We use it to compute the following parameters:

Gg=ql (3.4)
§=sl (3.5
= =f( )sI— (¢gs)I = NI (3.6)

Given N, the value of N can be computed as N = N /I. We can also

compute N2 needed for the encryptlon function using the isomultiplicative
operation of the first kind 4° = ab] as follows:

A

N? = N2] (3.7)

The values for § and p corresponding to g and p are given by
g=I+N=[+Ni=(1+N)I=gl (3.8)
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p=pl (3.9)
Note that given g, the value of g can be computed as g = g/ I. The function
L(U) becomes

A

L] = (U - .f) « N7 = (U = 1) [(I~)IN-1

X ) (3.10)
= (U - 1)N‘1] I=L[U|,
The private decryption isokeys corresponding to u and A becomes
fo=pl (3.11)
A=lem(§g—1,5—1) (3.12)
The private isokey ) is also given by
A=A (3.13)

When X is known, A can be obtained by A = M.
Hence, the pairs of public encryption isokey and private decryption isokey
are (g, N) and (A, /1), respectively.

3.2 Paillier-Senegalese RGB Image Encryption Phase

This subsection introduces the traditional Paillier encryption scheme and
the modification leading to the Paillier-Senegalese scheme for a given RGB
image.

For the traditional Paillier encryption phase, let ygr, ye, and yp represent
the pixel intensity values for the R, G, and B-channel images respectively.
To encrypt each pixel intensity value in the Paillier scheme, one writes:

E(yg) = g*?zY mod (N?) (3.14)

E(yg) = g*°zy mod (N?) (3.15)
E(yp) = g*?z3 mod (N?) (3.16)
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where z;,7 = 1,2, 3 is a random number in

Zy ={1,2,...,(N = 1)}. The encrypted values E(y,), E(y,), and E(y,)
are outside of our range of [0, (L—1)]. To map them back into this range, we
apply the mod [p] operation, where p is 257. These values belong to the
encrypted channel images that can be transmitted or stored as described in
[18], and can be computed as follows:

Cr = E(yz) mod (p) = {[gY»z]’ mod (N?)]} mod (p)  (3.17)

Co = E(ys) mod (p) = {[g¥cz)’ mod (N?)]} mod (p)  (3.18)
Cp = E(ys) mod (p) = {[g*»2f mod (N?)]} mod (p)  (3.19)

3.2.1 The Paillier-Senegalese Encryption Scheme

To obtain the Paillier-Senegalese encryption scheme, we replace the above
equations by:

E(9,) = §° * 2N mod(N?) (3.20)
E(),) = §% x &) mod(N?) (3.21)
E(j,) = §% * ¥ mod(N?) (3.22)

where z; = a:if,z' = 1,2, 3 is a random isonumber in Z,*V, (f = gf, etc. (see
section 3.1).

Proposition 3.1. Using the Paillier-Senegalese cryptographic system, we
have

A

E(§) = EW)] (3.23)
Proof. To encrypt y using Paillier encryption function, we can write
E(y) = ¢¥z" mod (N?) (3.24)

Let N? be a positive integer and g¥z™ be a nonnegative integer. Using the
division algorithm, we have

g¥z" = qN* + E(y) (3.25)
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where ¢ = 227 |, 0 < E(y) < N?,

where the symbol |z| is the floor function which represents the largest
integer less than or equal to z.

So using Eq. 3.25, Eq. 3.24 can be written as

YN
E(y) = g¥z" — |2 ] X NP (3.26)

Multiplying both side of of Eq. 3.26 by I gives

YN 5
E@)l = <gya:N - LQW JN2) I (3.27)

The right side of Eq. 3.23 can be written as

E(@) = §9 « ™ mod N? (3.28a)
= (¢WaN) I mod (N*I) (3.28b)
A gya:Nf S
= (gW2M) [ - | Y J(N2I) (3.28c)
gyl‘N o| 2
= | (W) — | = |N?| 1 (3.28d)
E(§) = E(y)] (3.28¢)
O

Using the result obtained from Eq. 3.28e, Eqs. 3.20 3.21, and 3.22 can
be written as

A

E(@R) = E(yR)I (329)
E(js) = E(ys)] (3.30)
E(g,) = E(y,)I (3.31)

The computational cost of implementing Eqs. 3.29, 3.30, and 3.31 is less
than the computational cost of Egs. 3.20, 3.21, and 3.22.

Similar to the encryption of RGB images using the traditional Paillier en-
cryption system as described on our previous papers [17], [18] the quantities
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E(9,), E(9s), and E(§,) are out of the range [0,(L — 1)]. They must be
mapped to this range by applying mod p to each as follows:

Cr=E(@,) mod (p)=[39) +z™ mod (M)} mod (p)  (3.32)

Co=E(j;) mod (p) = [§0) % 2" mod (V)Y mod (p)  (3.33)
Cs=E(j,) mod (p) = [39) x2{" mod (M)’ mod (p)  (3.34)

The quantities Cpg, Cg, and Cp represents the encrypted pixel intensity
values that will be transmitted and/or stored.
Other parameter needed for the decryption are also computed as follows:

E(g5)
= |22 (3.35)
E()s)
o= |25 (3.36)
g5 = E(;:B) (3.37)

where the symbol | | represents the floor function. The quantities given in
Egs. (3.35), (3.36), and (3.37) are not secret but can also be encrypted using
other encryption methods to increase the security of the cipher images.

3.3 Paillier-Senegalese RGB Image Decryption Phase

This subsection presents the Traditional Paillier Cryptographic Decryption
Approach and the Proposed Paillier-Senegalese Cryptographic Decryption
Approach.

In our previous paper [17], the traditional Paillier Cryptographic scheme
was used for the decryption of E(y,) , E(y,) and E(y,) to obtain y,, y,
, and y,.

In particular the encrypted pixel intensity values Cp, C,, and C,, and

G

the quotients given by gt, = [.E(_;B_)J, gty = L%)J, qt, = LE(zE)J -
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assumed available to the decryption function at the receiver side. To re-
construct E(y,), E(y,), and E(y,) before applying the Paillier decryption
function, we can write.

E(ys) =gty xp+Cr =0 (3.38)
E(yy) =gty xp+Cs=p (3.39)
E(ys) =qlty Xp+ Cs =7 (3.40)

To recover the original pixels’ intensity values ¥, ., and y,, the Paillier
decryption function is applied to E(y,) = o, E(y,;) = B8, and E(y,) = v in
Egs. (3.38), (3.39), and (3.40) as follows:

Lla* mod (N?

(V)]

U = L[ mod (M?)] mod (N) (3.41)
L[3* mod (N?)]

Yo = I[P mod (M)] mod (N) (3.42)
Lly* mod (N?)]

s = Tor e ] Mo (V) (3.43)

3.3.1 The Paillier-Senegalese Decryption Approach

Now, consider our proposed Paillier-Senegalese decryption method. Assume
that the quantities r» o> a0d g are available to the decryption function
in addition to CR, Cg, and Cg.

One must first reconstruct £ (Tr), E(y,), and E(g,) from the receive cipher
pixel values, Cg, Cg, and Cx before applying the decryption function as
follows.

E(jp) =a,xp+Cr=é (3.44)
E(fs) =g, xp+Co =5 (3.45)
E@,)=q, xp+Cs=% (3.46)

The Paillier-Senegalese decryption function can be applied to E(g,),
E(9,), and E(7,), in Eqgs. (3.44), (3.45), and (3.46) to recover the original
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pixels’ intensity values ¢,, 9., and 9,, and then y,, y,, and y, belonging
to our original channel images. They are computed as follows:

N A )
QR=L[O{ mod (VO] od () (3.47)
Li* mod (N2)
29 N2 R
gG=L[ﬂA 25 Gl () (3.48)
L[g* mod (N?)]
A A )
g, = LT mod (VIL oy (3.49)
L[g* mod (N?)]
From equations 3.11 and 3.3, L[g mod (N2)] = 4 = ul, so that these

equations can be written as:

_ {L[a mod (N2)] * j } mod (N) (3.50)
g = {L mod (N2)] * ﬂ} mod (V) (3.51)
UB {L *y’\ mod ]\’2 )] * ,u,} mod (N) (8.52)

A

To find L[&* mod (N?)], let U = &* mod (N?). The value of U can also
be computed as U = (o*)] mod (N?) and using Eq. 3.10 we have

; - o (O-1
Another method of computing L[d;\mod(]if 2)] is given by
L[&* mod (N?)] = L(U) = LU)I (3.54)

where L(U) is given in section 3.1.1 and U = a*modN?, where a = -‘I%

Similarly, let U; = Q:\ mod (N Q). The expression of U; can also be written
as Uy = (¢*)Imod(N?) and we can also write
(U - 1)

L[g* mod (N?)] = L(U,) = 5

(3.55)
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Furthermore, Eq. 3.55 is also given by
L[g* mod (N)] = L(U,) = L(U,)] (3.56)

where L(U:) is given in section 3.1.1 and U; = ¢* mod (N?).

Similar analysis from Eq. 3.50 through Eq. 3.56 can be also apply to further
compute the values of §, and ¢, in Egs. 3.48 and 3.49. Now, the values of
Yn» Yo, and y, are given by

Y Y Y
Yr = —;}', Yo = '}g—’ Yp = —}E; (3.57)

For software implementation purposes, it is more efficient to use matrices
of pixels’ intensity values instead of individual pixels.

4 CONCLUSION

In this paper, we have introduced the Paillier-Senegalese cryptographic
scheme which combines the Santilli’s Isonumber Theory of the first kind
with the Paillier Cryptographic System to provide an additional degree of
freedom to the encryption-decryption of RGB images. This leads to a Hy-
brid public private-key cryptographic system with a substantial increase in
image security, which also may be used in a variety of applications for secure
systems that may not be related to image encryption and decryption.
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