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Abstract

In [5], the author has devised uniform i-spotty-byte error control codes which are suit-
able for semi-conductor memories where an I/O word is divided into irregular bytes not
necessarily of the same length with those of equal length aligned together constituting a
“sector” and uniform i-spotty-byte errors are defined as i-spotty-byte errors confined to
a particular sector. The author also discussed the code design of uniform i-spotty-byte
error control codes and their decoding. However, an important and practical situation is
when uniform i-spotty-byte errors caused by the hit of high energetic particles are inde-
pendent in nature in the sense that sum of the erroneous i-bytes is non-zero. Keeping this
in view, in this paper, we propose a new model of uniform i-spotty-byte errors viz. “uni-
formly independent i-spotty byte errors” which are capable of correcting all uniformly
independent i-spotty-byte errors of measure p(or less). It has been further shown that
these codes require fewer number of check bits than the earlier defined uniform i-spotty
byte error control codes [5] and/or usual i-spotty-byte error control codes [4] meaning
thereby that the rate of storage of these codes is higher than the other ones. Also, the
decoding algorithm presented in this paper for uniformly independent i-spotty byte error
control codes is greatly simplified than those for the uniform i-spotty byte error control
codes.
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1. Introduction

The uniform i-spotty-byte error control codes devised by the author [5] are suitable
for semiconductor memories consisting of irregular RAM chips not necessarily of the
same size and those of same length are aligned together and errors caused by the hit
of high energetic particles are confined to adjacent i-bytes/RAM chips of the same size
only. However, an important and practical situation is when uniform i-spotty-byte errors
are independent in nature in the sense that sum of the erroneous i-bytes in the erroneous
sector is non-zero. Keeping this in view, this paper proposes a new model of uniform
i-spotty-byte error viz.“uniformly independent i-spotty byte errors” and presents code
for the correction of the same. It has been shown that the rate of storage of uniformly
independent i-spotty byte error control codes is higher than the usual i-spotty byte
error control codes and uniform i-spotty byte error codes. The paper also presents a
decoding algorithm for uniformly independent i-spotty-byre error correcting code which is
simplified in the sense of determining the erroneous sector in comparison to the decoding
algorithm for uniform i-spotty byte error correcting codes.

2. Definitions and Notations

Let ¢ = p™ be a power of prime number p and F, be the finite field with q elements.
A partition, P, of a positive integer N is defined as

P:N=mi+mgo+ -+mg,l1<my<mg---<my g21
and is denoted as
P = [ma][ma] -+ [mg] = [ma]* [na]™ -+ [na]™,
if
| mp = Mg =+ =My, = N1,

M 41 = My 42 = = M 4x = N2,

M +Az+ o+ Xe14+1 = T +A20 Xa1+2

== MA At As T Thse

Then we can write the field Fl’f as

FY FMoF e - -oFgw
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i=1 “A;—copies

S
Each vector v € Fév = @( @ F7¢) can be uniquely written as v = (vy, vz,
i=1 \;—copies
++,vs) where v; € (Fg?)V for all 1 < j < s and is represented as

v = (v],v3, -+, v} 7h), Vi EeFP for all0<a <Ay, (1)

or equivalently

0,1 0,2 (0,n5) (1,1) (1,2) (1,ny)
v; = (UJ( ),’U§ ),---,Uj’j,'l)j ,’Uj ,-~~,7)j j,---
Aj—-1,1 Aj—1,2 (Aj—=1,m;)
""U_E'J ),'U;-] )’___,,UjJ J),

o@D, o)y @ e Foforall0<a < Aj~1land 1 <b<ny

a _ (,(a1)
where v} = (v;77, v, - vy

Here v;(1 < j < s) is called the “j*" sector of v” consisting of \; i-bytes viz. v9,v},- - ,v;\j -
each of length n;. Thus the length of the j** sector v; is A\jn;. The partition P is named
as primary partition or irreqular-byte partition. Further, let 1 < T < N be a positive
integer such that P’ : T = [t;]* [ta]*2 - - - [ts]* be a partition of T where 1 < t; < n; for
alll<i<sandalsol <t; <ty <.+ <t, Then P’ is called as the “secondary parti-
tion” or “error partition”. Note that the secondary partition depends upon the primary
partition. The number N is called the primary number and the number T is called the

secondary number.

Clearly,
N = Ani + dang + -+ + Agns

and
T = Mty + Aoto + -+ + Asts.

We give below few definitions given in [5].

Definition 2.1 [5]. Let N and T be the primary and secondary numbers respectively
as discussed in the preceeding paragraph corresponding to the partitions P and P’ resp.

given by
P:N = [N - [ng),
and
P:T = [t1]>\1[t2]>\2 e [ts])\’a

where 1 <t; <n;foralll <i<s.
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8
Let v = (v1,v2,++,vs) be a vector in Ffl\’ = @( @ F;‘*’) as given in (1). The

i=1 “M\;—copies

irreqular-spotty-byte weight (or simply i-spotty-byte weight) w )(v) corresponding to
the primary partition P and secondary partition P’ is given by

Zw (a b)
=3 ¥ ||, @
i=1 a=0

e

where Zw H ('uz(a'b)) is the Hamming weight of the a*® i-byte in the i** sector v; and [z]
b=1

denotes the smallest integer greater than or equal to z.

Definition 2.2 [5]. The irregular-spotty distance (or simply i-spotty distance) between
two vectors u,v € F{;" corresponding to the primary partition P and secondary partition
P’ is given by

| Sun(ult? - oft)
b=1

t;

M .

d(ﬁP,P/)(u, ’U) — wéP,Pl) ('U.- _ 'U) - Z

)
I
=}

Zd (a b) (a b))

ti ?

(3)

M (

- £

I
o

a

Nni

where ZdH(ul(-a’b),vy”b)) is the Hamming distance between the at® i-bytes of the it"
b=1

sectors u; and v; of u and v respectively. Then i-spotty-byte distance is a metric function.

Note. We also call the i-spotty weight and i-spotty distance as “t; /n;-weight” and “t;/n;-
distance” respectively. Moreover, we simply denote the i-spotty weight wgP‘P’) and i-
spotty distance d(BP’PI) by wpg and dg respectively when the primary partition P and
secondary partition P’ are clear from the context.

Definition 2.3 [5]. Let T and N be the primary and secondary numbers corresponding
to the primary and secondary partitions P and P’ resp. where P and P’ are given by

PiN = [’TL1]>‘1 [’I‘Lz])\2 AT [ns])\sa
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P:T = [tMt)? [t
and 1 <t; <n;foralll <i<s.

8

Let V C Fév = GB( @ F};*) be an F, subspace of Ff;’ equipped with the i-spotty-
i=1 “\;~copies

byte metric dg. Then V is called an “irregular-spotty-byte” (or simply “i-spotty-byte”)

error control code and is denoted by [N, k,dg; P, P'] where

N NiAL + NgAa + -+ NgAg

= length of the code,
k = dimg(V), and
dg = minds(z,y).

z#Ey

3. Uniformly independent i-spotty-byte error control codes

In this section, we define uniformly independent i-spotty-byte errors and then design
codes to control these types of errors. We begin with the definition of vectors of i-spotty
weight or i-spotty measure u(p > 1) in relation to Definition 2.1.

8
Definition 8.1. Let v = (v, vz, -, vs) € FY = @( @ Fgi). wg(v) = w(ﬁP’P Y(v) =

i=1 A;—copies
i, where w[gp’P )(v) is given by (2), then we say that i-spotty-weight or i-spotty measure
of v is u(p > 1) or equivalently we say that t;/n;-measure of v is p.

Definition 3.2. A “uniformly independent i-spotty-byte error” of i-spotty measure u is
an _error vector of i-spotty measure p in which all the erroneous digits are confined to
i-bytes of the same sector and the sum of erroneous i-bytes is non-zero.

Note. Every uniformly independent i-spotty-byte error is a uniform i-spotty-byte error
but not conversely.

Example 3.3. Let ¢ =2, N = 13,7 =9 and

P: N =13=[1]3[2]*[3]%

P T =9=[1P[1][2%
be the primary and secondary partitions corresponding to N = 13 and T = 9 respectively.
Thenu=(0 0 0 : 00 00 : 110 011) € F}? is a uniformly independent i-spotty-byte
error of measure 2. But v = (0 0 0 : 00 00 : 110 110) € F}® is not a uniformly
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independent i-spotty-byte error of measure 2 but it is a uniform i-spotty-byte error of
measure 2.

We now define r X r companion matrix over Fg [1,6]:

Definition 3.4 [1,6]. Given a monic primitive polynomial g(z) of degree r over Fg, the
7 X r companion matrix M corresponding to g(z) is defined as follows:

g(x) = 90 +9117+92£L'2+ ----- +gr-—2$r_2+g.,._la;"'_1 +a,

00 .- 00 —go

. 0 000 —-g

01 0 0 =92

M = _ :
00 1 —Gr-2
0 0 0 1 —gro1 /0,
Observations.

(i) Let a be a primitive element of F; and a root of g(z). Its companion matrix M

has its columns ot for i = 1 to r where ot |is the coefficient vector of

zt(mod g(z)).

The companion matrix of & is M7 and its column vectors are expressed as follows:

rX7r

Let e be the exponent of g(z), that is, y = e is the least positive solution of z¥ =
(mod g(z)). The companion matrix M has the following properties [1,6]:

(a) M is non singular.
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(b) M° = Me =1I,.

() Mt= M7 if and only if i = j(mod e).

Now, we present the code construction method of uniformly independent i-spotty-byte
error control codes using the following definition:

Definition 3.5. Let ¢ be a prime number or power of a prime number. Let p,n1 < ng <
o< mgand t; <ty <. <t be positive integers with 1 <¢; < n; forall 1 <i < s.
Define

8 S
t= r;lgic{tj} and n = l’;lj.i{{n]}
Further, for each j =1 to s, let
(i) mj =q™ -1

(ii) In,; be the n; x n; identity matrix and Op, X n; be the n; x n; null matrix over F,
forall 1 <1< s;

(iii) MJ’ be the n; X n; companion matrix corresponding to a g-ary primitive polynomial
g;j(z) of degree nj;

(iv) (M;)% be the n x n; extended matrix obtained from the n; x n; matrix (Mj)%
by adding (n — n;) all-zero rows to it for all 0 < i; < m; — 1. We call M; as the
extended companion matriz with respect to M]’

Theorem 3.6. Using the notations as giwen in Definitions 3.5, the null space of matric
H where

o ( H OH - H,
= H{I Hé’ H_,/,, ’

8
and each Hi(1 < j < s) is a (an) X (mjnj) submatriz and each H](1 < j < s) is a
j=1
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(2 — 1)n) x (myn;) submatriz given by

On1 Xnj Omxnj e Om Xn;
Onzxnj Ongx'n,- e nz Xn;
Hl- o Onj_.1 X1 Onj-lxn,- e Onj_lxn,-
! In, In, e nj '
O"i+1 xn;  Onjixn; o Onj1xn;
: 3 ; -~
On,xnj On,xn:; e On,an (an)x(mjnj)
j=1
M? M} . (M;)(ms=1)
]\/IJ(.) sz i (Mj)2(mj"1)
"o _ : : : .
Hi =
0 N(2p-1) .. N (2u—1)(m;—1)
]Mj (MJ)( vy (MJ)( e (2p—1)nx(m;n;)

is a uniformly independent i-spotty-byte error control code correcting all uniformly in-
dependent i-spotty-byte errors of measure p or less and having check bit length R =
8

an + (21 — 1)n and code length N = miny + mang + - - - + myn,. The parameters of
j=1

the resulting code will be

[N,N—R,d;PaPI]a
where P : N = [ng]™[ng]™2 .. [ng]™s, P’ : T = [t1]™ [to]™2--- -+ [ts)™s and d < 2u+1.
Proof. It suffices to prove that the code V' which is the null space of H detects all i-
spotty-byte errors of measure 24 or less with errors occuring in the same sector and sum

of erroneous i-bytes be non-zero meaning thereby that the code corrects all uniformly
independent i-spotty-byte errors of measure p or less.

Let e € FY =é< b FZ").

j=1 “mj—copies
Then e is of the form

e = (e1, -,es)
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— 0 1 mi—1 0 1 mz—1 0 .1 me—1
- (el’el)"')ell ,62,62,"‘,62 ,"'aesaesa"Wess )>

where e;-"' €Fy’ forall1<j<sand0<u; £mj—1.
Suppose wg(e) < 2u with erroneous i-bytes confined to a single sector and sum of er-

roneous i-bytes is non-zero. Let j** sector e; be the erroneous sector having erroneous

. U j* .
i-bytes say ej*,e}?, -+, e;”” with

b Uk

t.
k=1 J
and e}’ +ej? 4 - 457" #0.

Then eH” = 0 gives the following relation:

[e;u (Inj )T e;“ (Mjux )T e}“ (M;‘m )T ...... e;.“ (1\,1(2“—1)1;1 )T]

HEH I, QT e M7 oot (T

Sl 5 5181 53 300 5 B o e85 B 6 B b o) 90080 5 R

Il 51075057 Ol 001G DI B 010 D003 D01 0 B350 v AT

+[e;‘j" (Inj)T e;_‘j* (Muj' )T e"‘?_‘j‘ (M2uj~ )T ______ e;f'j‘ (]V[(Q;t—l)uj, )T]

= [Onj On Opeveve On),

where Oy, and O, are the 1 x n; and 1 x n null matrices respectively.

Writing the above equation in the matrix form gives

(e;b ’e;bza"'»ei'l’j*) X

2
ui\T 2u\T .. (2p—Lyui\
In, (M7H)" (M;*) (M; )
I (Myz )T (M?uz)T o (M@ﬂ—l)uz)T
% nj 2 J J
Ujr\T (2u;s\T ... (2u—D)uje
I, (MM)T (MGur) (M )

= (On_.,»yOmOm +++,0n).

Replacing the extended companion matrix M; by the corresponding companion matrix
M ]’ in the above matrix equation results in an equivalent matrix equation and is given



by
(6;1)6?2) v '36?3") X
Iy, (MJ’-)“l)T
R (Mp))T
In; (Mj)u)T
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((M5)>)T

()T

(7))

= (O‘nj)onj,Onj)""O'nj)’

or equivalently

(e;‘“ae;“za e >e;'bj.) X
iy
(M)
X .

(M;)(2u~1)u1

=(Onj)0njaonja"

Since the total numbers j* of erroneous i-bytes is less than or equal to 2y, therfore,

In,

(M)v

(MJ’,)(2#—1)H2

‘ 1On,‘)~

(Mp@u=truny

(M) @r=Dua)T

((M;)(Zy—l)uja )’I’

2u—1)u «
(MJ'-)( pu—1)u;

writing the above matrix equation for the top j* relations, we get

Gl LRI ol |

i’

= (O'n._,,-)O'n.j)"'

(]\/[;)(]u—l)ul (A/I‘é)(j‘_l)'lm
+On;)-

3J

(M)

(MJ{)(j‘—l)u,-»
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The coefficient matrix being Vandermonde’s matrix is non-singular. Therefore, the above
system of equations have a solution viz.

— e e T
=e’=.=¢€; = Og,

which implies that e = 0, A contradiction. Thus eH” # 0 and hence H is the null
space of an i-spotty-byte code correcting all uniformly independent i-spotty-byte errors
of measure p or less. O

Note. We may also have a shortened version of the code discussed in Theorem 3.6 by
choosing integers A1, Ag, - -+, Ay such that 1 < A; < m; for all j = 1 to s and then keeping
only first A\jn; columns of he submatrices H} and Hj. The parameters of the shortened
code will be [N, N — R, d; P, P'] where

N = \ini+Xng+-+ AsTg,
s
=1
P:N = [m]M[na] - [n]*,
PAT = [ ) and
d < 2u+1.

4. Decoding of uniformly independent i-spotty-byte error cor-
recting codes

In this section, we present a decoding algorithm for the uniformly independent
i-spotty-byte error correcting codes.

Let V be an i-spotty-byte code correcting all uniformly independent i-spotty-byte errors
of measure u or less. Let u,r and e be the transmitted codeword, the received word and
the error vector respectively. The syndrome S of the received word r is calculated as

S, \7T

S
S = . =rHT = (u+e)HT = eHT,
Sou
where S € Fgl+n2+~-~+ns is a (ny 4+ ng + - -+ + ng)-bit g-ary row vector and S; € Fy for

all 2 <1< 2u.

The decoding is done as follows:
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Step 1.
(i) If §; = 85 = .- = S;, =0, then there is no error during the process of communi-
cation.
(i) If S1 # 0 and all of S, = S3 = .-+ = S, = 0, then an uncorrectable error pattern

of measure greater than p has occured and a retransmission is sought.

(ili) If S; = 0 and either of S2,Ss,--+,S2, # 0, then we infer that sum of erroneous
i-bytes in the erroneous sector is zero meaning thereby that the errors are not
uniformly independent and again a retransmission is sought.

(iv) If Sy # 0 and at least one of Sa,Ss,: S, is non-zero, then for the decoding
purpose, the pattern of S; indicates the erroneous sector position as explained
below:

We partition S; into different blocks of lengths nq,ng, -+, ng consecutively.
Now, if the first n; bits in S; form a non-zero pattern and remaining ng+ng+- - - +mns
digits are all-zero, then the error is in the first sector. If the first ny bits in S
are all-zero and the next my bits form a non-zero pattern and also the remaining
ng + n4 + -+ + ng bits in S; are all-zero, then the error lies in the second sector
and so on.

Step 2. From Step 1, we know the erroneous sector number say ;" sector is in error
having i-bytes of length n;. Now, from the patterns of S, 83, -, S3,, we define a new
syndrome vector S* as follows:

x AT
1
53
S* = . 3
83,
where
S] = n;-bit non-zero pattern as given by Si,
S; = first n;-bits of S,
S3 = first n;-bits of S3

Ssu = first n;-bits of Sy,.
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Step 3. After calculating the new syndrome vector §* which is identical to the syndrome
of an error vector in Reed-Solomon code with minimum distance (2u 4 1) over Fg”, the
error pattern and error location over Fy? are determined by using the Berlekamp-Massey
algorithm for RS codes over Fy?.

We illustrate the code construction method and decoding algorithm with the help
of following examples:
Example 4.1. Let ¢ =2, n; = 2,n9 = 3,t; = 2,3 =2 and = 2. Then
np=2Mm—1=22-1=3 andmy=2"-1=2%-1=7,
t= I;’lzli({tj} = max{2,2} =2,
n= 1}1};{{17,3-} = max{2,3} = 3.
The parametels of the code to be constructed as discussed in Theorem 3.6 are given by
R= Zn] (2u—1)n=14 and N = ZmJnJ—T?
j=1

Let M { be the 2x 2 binary companion matrix defined by the binary primitive polynomial
g1(z) = 2>+ z + 1. Then M/ is given by

, _ (01
MI-‘(I 1>2x2.

The 3 x 2 extended companion matrix M] is obtained by adding a row of all-zeros to M
and is given by

0 1
Mi={11
0 0

3%X2
The various powers of extended companion matrix M; are given below:

10 01

M) = 0 1 Mi=1 11 ,
00 3x2 00 3x2
11

ME = 10 M3 = MY
00 3x2

Let M7 be the 3 x 3 binary companion matrix defined by the binary primitive polynomial
g2(z) = 23 + 2 + 1 and is given by

M =

o = O
= O O
O =

3x3
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Since here n = ny = 3, therefore, the extended companion matrix M, is same as the

companion matrix Mj i.e. My = Mj. The various powers of extended companion matrix

M, are given below

10
M=1| 0 1
00
10
Mi=1| 11
0 1

o

00
Mi=| 10
3x3 01
01
Mi=] 1 1
3x3 11
110
ME=10 0 1
1 00

1 0

1 Mi=| 0
3x3 1

1 1

0 M= 1

1 3Ix3 1
JMI =I5,

3x3

—

—

—t

O =

3x3

3x3

The parity check matrix of an i-spotty-byte code correcting all uniformally independent
errors of measure 2 or less is given by

Ip I I . Oaxz Ozxz Oaxs Oaxz Oaxa
Osxz Oaxz Oaxz I3 I3 I3 I3 I3
MY MP o oMEO: MY M} MZ M) M
M ME O OME O MY ME O OMEP O M§ M3
MP MmP oMf o M§ O MP O M§ MS Mj?

Oax3
I3

M.
M3°
M.

O2x3
I

M3
M3?
M38

14x27



10
01
00
00
00

10
= 01
00
10
01
00
10
01

00

Let e = (00 00 00 :

10
01
00
00
00

01
11
00
11
10
00
10
01
00

10
01
00
00
00

11
10
00
01
11
00
10
01
00

000
000
100
010
001

100
010
001
100
010
001
100
010
001

000
000
100
010
001

001
101
010
010
011
101
101
111
011
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000
000
100
010
001

010
011
101
011
110
111
110
001
100

000
000
100
010
001

101
111
011
110
001
100
010
011
101

000
000
100
010
001

011
110
111
001
101
010
111
100
110

000
000
100
010
001

111
100
110
101
111
011
001
101
010

000
000
100
010
001

110
001
100
111
100
110
011
110
111

14x27

100 010 000 000 000 000 000) be the error vector that has occured
during the process of communication.

We compute the syndrome vector S as

We partition S; into ny +ng = 2 + 3 bits i.e. S; = (00 110).

S =eHT = (8,85, 85s,54) = (00110, 101,010, 111).

Since the first n1-bits (i.e 2 bits) of S; are all-zero and the remaining no-bits (i.e. 3 bits)

are non-zero, therefore, we infer that the error lies in the second sector.

We form a new syndrome vector S*as

where

S1
52
3
5S4

8" = (51,53,53,5%),

no-bit i.e. 3 bit non-zero pattern in S; = 110,
first ng-bits i.e. first 3 bits of S; = 101,
first 3-bits of S3 = 010,
first 3-bits of Sy = 111.
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Thus
§* = (8%,83,85,8;) = (110,101,010,111) = (o?,a%, , 0®),

where « is a primitive element of F3 defined by the polynomial 2+ x4+ 1.

The error locator polynomial o* for the syndrome S$* using the Berlekamp-Massey algo-
rithm is computed as
o*(z) = 1+ oz + az®.

The degree of the error locator polynomial denotes the number of erroneous i-bytes.
Thus, in this case, there are two erroneous i-bytes. The inverse of the roots of the
error locator polynomial gives the positions of the erroneous i-bytes. Since the roots of
o*(z) are a® and o = 1, therefore, the inverse of the roots of o*(z) are a~% = o' and
a® = 1. Thus we deduce that zeroth and first i-bytes are the erroneous i-bytes in the
erroneous second sector. To find the erroneous i-byte patterns, we compute the evaluator
polynomial evaluator Z*(z) as given below:

I

Z*(z) o* (2)S* (z)

(1 + 03z + az?)(1 + Siz + Syz? + S3z® + Siat)

= (14032 +az?)(1 + o’z + a®2? + aa® + o®z?)

I

1+ ax® (keeping the terms of degree less than or equal to

2 since there are two erroneous i-bytes).
Now, the erroneous i-byte patterns are given by the formula

Z*(,B;]')

H(l + BrBY)
Py,

e; = Bi

where j is the erroneous sector number and f; = ‘= inverse of root of ¢* () and i varies
over powers occuring in o and gives the position of erroneous i-byte.
Here j =2,i=0,1, fo = a® and B; = o’
The erroneous i-bytes €3 and e} are computed as
w(p=1
6(2) = ﬁo( Z(ﬁo )1)>
(14 BBy
i 1+ a.12>
(1+a)
l1+a
= 1| ——) =1=(100),
(1 + a) (100}
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L Z*(BLY)
2 = ﬁ1<(1+ﬂoﬂfl)>

- @ <1+°‘_1> = (10},

14+a!

Hence the error pattern is given by

e=(00 00 00 : 100 010 000 000 000 000 000).

Example 4.2. Using the parameters of Example 4.1, we consider the case of double
uniformly independent i-spotty-byte errors occuring in the same i-byte of the erroneous
sector. For this, let the error vector be

e= (00 00 00 : 000 000 111 000 000 000 000).
The syndrome vector is computed as
S =eHT = (81, 5,,Ss,84) = (00111, 100,001, 011).
Since the first ny (= 2) bits of S; are all-zero and remaining na(= 3)bits form a non-zero

pattern, therefore, the error lies in the second sector.

Define
S* = (8%,85,83,83) = (111,100,001,011) = (a®, 1,02, o),

where « is a root of 3 + z + 1 € Fa[z].

The error locator polynomial o*(z) for the syndrome S* using the Berlekamp Massey
algorithm is given by

o*(z) = 1+ o’x.
Since degree (c*(z)) = 1, therefore, the number of erroneous i-bytes in the erroneous
second sector is 1. Also, a® is a root of o*(2) meaning thereby that a=% = a2 gives the
location of the erroneous i-byte i.e. error lies in the second i-byte of the second sector.

The evaluator polynomial Z*(z) is computed as

Z"(z)

o*(z)(z)S"(z)
(1+ a?z)(1+ Pz + 2 + o?2® + o*z?)

Il

1+ oz (kleeping the terms of degree less than or

equal to 1 as there is a single erroneous i-byte).
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Now, the erroneous i-byte pattern is given by

3(~2
e2 = o? (Lt—a—l(i——z> =a?(1+a) = a?a® = a® = (111).

Hence the error pattern is given by

e=(00 00 00 : 000 000 111 000 000 000 000).

Example 4.3. Let ¢ =2, ny = 2,ny = 4,t; = 2, =4 and g = 1. Then
my=2M-1=22-1=3, my=2"-1=2%-1=15,
t= m?&ic{t]} = max{2,4} =4, and
J=
n= mzaic{nj} = max{2,4} = 4.
J=
The parameters of the code to be constructed are given by R = (n1 +ng) + (2u+ 1)n =
(2+4)+4=10and N = ming +mgng =3 x 2+ 15 x 4 = 66.

Let Mj be the 2 x 2 binary companion matrix defined by the binary primitive polynomial
g1(z) = 22 + x + 1 as given in Example 4.1. The 4 x 2 extended companion matrix M;
is obtained by adding two all-zero rows to M1 and is given by

My =

oo O
O O

4x2

The various powers of extended companion matrix M; are given below:

10 0 1 11
01 11 2 10

M =10, Mi=1 o Mi=| 4 M3 = MY,
00 4%2 00 4x2 00 4x2

Let M) be the 4 x 4 binary companion matrix defined by the primitive polynomial
g2(z) = 2* + 2+ 1 and is given by

S OO
o= OO
-0 O O
O O = =

4x4

Since here n = ny = 4, therefore, the extended companion matrix M, is same as the
companion matrix M i.e. My = M}. The various powers of extended companion matrix
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M, are given below

1 0 0 0 0 0 0 1
o _ 01 0 0 | 1001 2
Mg = 001 0 yMy = 01 00 »Mg =
0001/,, 001 0),.,
01 0 0 10 0 1
01 10 1 1 0 1
3 _ 4 _ 5 _
M2“0011 ’M_0110 xMy
1001),, 001 1/),,
01 10 1 1 0 1
01 0 1 101 1
6 7 8 __
M; = 1 01 0 ’M2”0101 My =
1101),, 1 010/,.,
01 0 1 101 1
1 1 1 1 1110
9 10 __ 11
M2‘0111 ’M2“1111 My =
101 1/),., 011 1/),.,
1111 1 11 0
12 1 00 0 B_| 0001 u_
My" = 1 100 ’M2‘1000 My™ =
111 8),., 1 100/,,
M215=I4.

Q= O =

OFRPPOe OO O

= - 00 = OOO
H O R M OO

= )
O =

= =R S i )
O OO - e
OO = O _ = O

W

O, OO O OH >

O~ O+ OMFFEO

4x4

4x4

4x4

4x4

4x4

The parity check matrix H of an i-spotty-byte code correcting all uniformally independent

errors of measure 1 or less is given by

H = (A:B)10xss,

Iy Iz Iz
A= Oax2  Oax2  O4x2
. . g
M M} M3 toxs

10x6
O2x4 ©O2x4 Ozxa Oaxa Oaxa O2x4 92xa4  O2x4  O2xa
s A Ia A I3 I, i I4 Iy foh
170 e As2 1r3 ik b A6 A7 M7
1\42 IVI2 ]\/!2 [W2 M2 NI2 Afz h{z 1\«[2

O2x4
T4
M9

) 10x60
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0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100
0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010
= 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

1000 0001 0010 0100 1001 0011 0110 1101 1010 0101 1011 0111 1111 1110 1100
0100 1001 0011 0110 1101 1010 0101 1011 0111 1111 1110 1100 1000 0001 0010

0010 0100 1001 0011 0011 0110 1101 0101 1011 0111 1111 1110 1100 1000 0001
0001 o010 0100 1001 0011 0110 1101 1010 0101 1011 0111 1111 1110 1100 1000

Let e = (00 00 00 : 0100 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000)
be the error vector. Then the syndrome of the error vector e is given by

S =eHT = (51, S3) = (001100, 0000).

Since S7 # 0 and S; = 0, thus an uncorrectable error pattern has occured and retrans-
mission is sought. This is evident from the fact that the code which is the null space of
H can correct only single i-byte errors whereas the error vector e contains double i-byte
errors and hence the errors are only detected but not corrected by the decoder.

On the other hand, suppose e has single i-spotty-byte error occuring in the (say) second
sector i.e. let

e=(0000:1100 0000 0000 0000 0000 0000 0000 0000 0000 OO0 0000 0000
0000 0000 0000 0000 0000).

Computing syndrome of e gives
S =eHT = (S1,8,) = (00100, 1100).

Since the first n1(= 2) bits of Sy are all-zero and the remaining ny(= 4)-bits form a
non-zero pattern, therefore, we infer that the error lies in the second sector of the error
vector.

We form a new syndrome vector
3 * *
S* = (51, 53),
where

S{ = ng(i.e.d)-bit non-zero pattern in S; = 1100 = o

S3 = first 4-bits of Sy = 1100 = o?,

)

where « is a root of z* + z + 1.

10x60
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Thus
8* = (S1,53) = (e, a?)

The error locator polynomial o*(z) for the syndrome S* using the Berlekamp-Massey
algorithm is computed as
o*(z) =1+

Since deg(o*(z1) = 1, therefore, we infer that there is only one erroneous i-byte in the
erroneous second sector. Since a’ = 1 is a root of o*(z), therefore, aj! = 1 = a° gives
the location of the erroneous i-byte i.e. 0t" i-byte in the second sector contains errors.

The evaluator polynomial Z*(z) is given by

Z*(z) o*(z)S™(z)
= (1+2)(1+ oz +a*2?)

1+ az (as deg (Z*(z) £ 1).

Now, the erroneous i-byte pattern is given by the formula

w(R—1
g - a(2052),

= a° (l—-‘_—lci—l-> =1+4a=ca*=(1100), where By =a’=1.
Hence the error pattern is given by

e= (00 00 00 : 1100 0000 0000 0000 0000 0000 0000 0000 OO0 (O
0000 0000 0000 0000 0000).

Comparative Study.

In this section, we present a comparative study of rates of transmission, storage of
binary uniformly independent i-spotty byte error control codes presented in this paper
and non-uniformly independent i-spotty byte codes presented earlier [4.5] for different
values of the parameters ny,ng, --,ns and t1,ty---,ts. We are restricting ourself for
s = 2 only.
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Table 5.1
Value of measures 4 of | Rate of uniformly | Rate of non-
parameters uniformly independent uniformly
independent i-spotty independent
errors to byte code i-spotty
be corrected byte code

ng=2,n9=3 =1 0.703 0.600

tl 25 t2 =

ny=3,ny =4 =1 0.864 0.816
t1=3,t0 =3

ny=3ny,=5 w=1 0.926 0.900

tl = 2, tz =4

ng=2,n, =4 ==l 0.848 0.785

ty =2, =3

ny=2,ny =3 p=2 0.481 0.333

ti =2,ta=1

ny = 3,77,2 =4 K= 2 0.764 0.523

t1 =112 =1

ny =3,ng =3 =2 0.642 0.440

t1 =1,ta=1

We infer from the Table 5.1 that the rate of transmission/storage of uniformly inde-
pendent i-spotty byte codes is higher than the non-uniformly independent i-spotty byte
codes and thus the codes presented in this paper are more economical to use and provide
better transmission/storage rate than the earlier considered non-uniformly independent
i-spotty-byte codes [4,5].

5. Conclusion.

In this paper, we have presented a new class of i-spotty-byte codes viz. uniformly
independent i-spotty-byte error control codes which are capable of correcting all uniform
i-spotty-byte errors and the errors are independent in the sense that the sum of erroneous
i-bytes occuring in the erroneous sector is non-zero. We have discussed the code design
of these codes in terms of their parity check matrix followed by a decoding algorithm to
decode the received vector which is further illustrated by several examples. Finally, a
comparative study of the codes presented in this paper with the earlier known i-spotty-
byte codes has been given to show that these codes are more economical in terms of their
transmission/storage than the previously considered i-spotty-byte codes [4,5].
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